• 제목/요약/키워드: Defect printing

검색결과 41건 처리시간 0.033초

CNN 알고리즘을 이용한 인공지지체의 3D프린터 출력 시 실시간 출력 불량 탐지 시스템에 관한 연구 (A Study on Real-Time Defect Detection System Using CNN Algorithm During Scaffold 3D Printing)

  • 이송연;허용정
    • 반도체디스플레이기술학회지
    • /
    • 제20권3호
    • /
    • pp.125-130
    • /
    • 2021
  • Scaffold is used to produce bio sensor. Scaffold is required high dimensional accuracy. 3D printer is used to manufacture scaffold. 3D printer can't detect defect during printing. Defect detection is very important in scaffold printing. Real-time defect detection is very necessary on industry. In this paper, we proposed the method for real-time scaffold defect detection. Real-time defect detection model is produced using CNN(Convolution Neural Network) algorithm. Performance of the proposed model has been verified through evaluation. Real-time defect detection system are manufactured on hardware. Experiments were conducted to detect scaffold defects in real-time. As result of verification, the defect detection system detected scaffold defect well in real-time.

딥러닝 알고리즘을 이용한 3D프린팅 골절합용 판의 표면 결함 탐지 모델에 관한 연구 (A Study on Surface Defect Detection Model of 3D Printing Bone Plate Using Deep Learning Algorithm)

  • 이송연;허용정
    • 반도체디스플레이기술학회지
    • /
    • 제21권2호
    • /
    • pp.68-73
    • /
    • 2022
  • In this study, we produced the surface defect detection model to automatically detect defect bone plates using a deep learning algorithm. Bone plates with a width and a length of 50 mm are most used for fracture treatment. Normal bone plates and defective bone plates were printed on the 3d printer. Normal bone plates and defective bone plates were photographed with 1,080 pixels using the webcam. The total quantity of collected images was 500. 300 images were used to learn the defect detection model. 200 images were used to test the defect detection model. The mAP(Mean Average Precision) method was used to evaluate the performance of the surface defect detection model. As the result of confirming the performance of the surface defect detection model, the detection accuracy was 96.3 %.

바인더 젯 3D 프린터의 프린팅 헤드 내구성 향상을 위한 연구 (A Study for Improving the Durability of Print Heads in Binder Jet 3D Printers Method)

  • 황정철;김태성
    • 대한안전경영과학회지
    • /
    • 제25권2호
    • /
    • pp.153-158
    • /
    • 2023
  • This research was conducted to reduce the defect rate caused by nozzle clogging of printing heads used in binder jet 3D printers. The binder jet 3D printing technology may adhere to the printing head nozzle by dispersing powder due to mechanical operation such as transferring the printing head and supplying powder, and may cause nozzle clogging by natural curing at the nozzle end depending on the type of binder used. To solve this problem, this study created a cleaning module exclusively for printing heads to check whether the durability of printing heads is improved through analysis of printing results before and after using the cleaning module. To this end, this research used a thermal bubble jet printing head, and the used powder was studied using gypsum powder.

The Manufacture of Custom Made 3D Titanium Implant for Skull Reconstruction

  • Cho, Hyung Rok;Yun, In Sik;Shim, Kyu Won;Roh, Tai Suk;Kim, Yong Oock
    • Journal of International Society for Simulation Surgery
    • /
    • 제1권1호
    • /
    • pp.13-15
    • /
    • 2014
  • Nowadays, with advanced 3D printing techniques, the custom-made implant can be manufactured for the patient. Especially in skull reconstruction, it is difficult to design the implant due to complicated geometry. In large defect, an autograft is inappropriate to cover the defect due to donor morbidity. We present the process of manufacturing the 3D custom-made implant for skull reconstruction. There was one patient with skull defect repaired using custom-made 3D titanium implant in the plastic and reconstructive surgery department. The patient had defect of the left parieto-temporal area after craniectomy due to traumatic subdural hematoma. Custom-made 3D titanium implants were manufactured by Medyssey Co., Ltd. using 3D CT data, Mimics software and an EBM (Electron Beam Melting) machine. The engineer and surgeon reviewed several different designs and simulated a mock surgery on 3D skull model. During the operation, the custom-made implant was fit to the defect properly without dead space. The operative site healed without any specific complications. In skull reconstruction, autograft has been the treatment of choice. However, it is not always available and depends on the size of defect and donor morbidity. As 3D printing technique has been advanced, it is useful to manufacture custom-made implant for skull reconstruction.

상악골 결손부 환자에서 3D printing을 이용한 closed hollow bulb obturator 수복 증례 (Prosthetic rehabilitation for a maxillectomy patient using 3D printing assisted closed hollow bulb obturator: a case report)

  • 오미주;이종혁;송영균
    • 구강회복응용과학지
    • /
    • 제35권3호
    • /
    • pp.191-198
    • /
    • 2019
  • 본 증례는 상악골 결손이 있는 무치악 환자에서 3D printing을 이용해 closed hollow bulb obturator로 수복한 증례이다. Magic $denture^{TM}$ 시스템(Cozahn, Seoul, Korea)에서 제공하는 트레이와 인상법을 이용하여 구내 인상을 채득하였고, 시적의치상에서 수직고경과 안모, 유지력 등을 확인하였다. 환자가 요구하는 바와 오차를 시적의치에서 수정한 후 이를 반영하였다. 의치의 무게를 줄이고 균일한 두께를 부여하기 위해 상악골 결손부위를 closed hollow bulb로 디자인하여 최종의치상을 프린팅하였다. 치료 후 심미적 및 기능적으로 만족스러운 결과를 얻었기에 이를 보고하는 바이다.

인공지지체 불량 분류를 위한 기계 학습 알고리즘 성능 비교에 관한 연구 (A Study on Performance Comparison of Machine Learning Algorithm for Scaffold Defect Classification)

  • 이송연;허용정
    • 반도체디스플레이기술학회지
    • /
    • 제19권3호
    • /
    • pp.77-81
    • /
    • 2020
  • In this paper, we create scaffold defect classification models using machine learning based data. We extract the characteristic from collected scaffold external images using USB camera. SVM, KNN, MLP algorithm of machine learning was using extracted features. Classification models of three type learned using train dataset. We created scaffold defect classification models using test dataset. We quantified the performance of defect classification models. We have confirmed that the SVM accuracy is 95%. So the best performance model is using SVM.

기계 학습을 이용한 인공지지체 외형 불량 예측 모델에 관한 연구 (A Study on Prediction Model of Scaffold Appearance Defect Using Machine Learning)

  • 이송연;허용정
    • 반도체디스플레이기술학회지
    • /
    • 제19권2호
    • /
    • pp.26-30
    • /
    • 2020
  • In this paper, we studied the problem if the experiment number occurring in order to identify defect in scaffold. We need to change each of the 5 print factor to predict defect when printing disk type scaffold using FDM 3d printer. So then the number of scaffold print will be more than 100,000 times. This experiment number is difficult to perform in the field. In order to solve this problem, we have produced a prediction model based on machine learning multiple linear regression using print conditions and defect scaffold data for print conditions. The prediction model produced was verified through experiments. The verification confirmed that the error was less than 0.5 %. We have confirmed that satisfied within the target margin of error 5 %.

Heatset 윤전 오프셋 인쇄에서 인쇄주름에 대한 인쇄조건의 영향 (Effect of Printing Conditions on Fluting in Heatset Web Offset Printing)

  • 전성재;윤종태
    • 펄프종이기술
    • /
    • 제41권1호
    • /
    • pp.52-60
    • /
    • 2009
  • A printing defect known as fluting (or waviness) of the web printed by heatset web offset printing process is one of the chronically serious problems deteriorating print quality. In this paper, fluting occurrence on uncoated papers was explored in terms of many printing conditions including drying temperature, fountain solution amount, ink supply, and press configurations. For this purpose, fluting on prints from real press runs was appraised in a quantitative manner. As results, ink supply was a distinctive factor for fluting such that the lower ink amount, the milder fluting. However increase in fountain solution seemed to make fluting severer while the effect of drying temperature was inconsistent for each paper. This result might indicate variable drying requirements for each paper. Thereby it was suggested that the optimum drying conditions related to the printabilities of each paper need to be established to minimize fluting potential. A press with short dryer and drastic cooling unit produced higher fluting. Suggestions for future work were given along with interpretation for the results.

롤투롤 시스템에서의 비 접촉 이송 시스템을 위한 수학적 장력 모델에 관한 연구 (A study on the Mathematical Tension Model for a Non-contact Transfer of a Moving Web in R2R e-Printing Systems)

  • 이창우;김호준;강현규;신기현
    • 제어로봇시스템학회논문지
    • /
    • 제15권9호
    • /
    • pp.894-898
    • /
    • 2009
  • In a post printing section of roll to roll printing systems, scratch problem is the major defects. The functional qualities such as conductivity, mobility could deteriorate because of the scratch defect. In general, the scratch of the printed pattern on the flexible substrate was induced from a contact between rolls and printed pattern in the post printing section. In this paper, for non-contacting transfer of a moving web, a mathematical tension model has been developed considering strain due to air floatation and the proposed mode has been validated by numerical simulation. Additionally, the correlation between floatation height and speed compensation to control the tension and register are investigated. On the basis of the proposed model, a guide line of speed control in R2R printing system is presented to guarantee the non-contact between rolls and R2R printed pattern on the flexible substrate.

Data-driven Approach to Explore the Contribution of Process Parameters for Laser Powder Bed Fusion of a Ti-6Al-4V Alloy

  • Jeong Min Park;Jaimyun Jung;Seungyeon Lee;Haeum Park;Yeon Woo Kim;Ji-Hun Yu
    • 한국분말재료학회지
    • /
    • 제31권2호
    • /
    • pp.137-145
    • /
    • 2024
  • In order to predict the process window of laser powder bed fusion (LPBF) for printing metallic components, the calculation of volumetric energy density (VED) has been widely calculated for controlling process parameters. However, because it is assumed that the process parameters contribute equally to heat input, the VED still has limitation for predicting the process window of LPBF-processed materials. In this study, an explainable machine learning (xML) approach was adopted to predict and understand the contribution of each process parameter to defect evolution in Ti alloys in the LPBF process. Various ML models were trained, and the Shapley additive explanation method was adopted to quantify the importance of each process parameter. This study can offer effective guidelines for fine-tuning process parameters to fabricate high-quality products using LPBF.