• Title/Summary/Keyword: Defect factors

Search Result 494, Processing Time 0.022 seconds

DEVELOPMENT OF MOBILE APPLICATION BASED RFID AND BIM FOR DEFECT MANAGEMENT ON CONSTRUCTION FIELD

  • Oh-Seong Kwon;Hwi-Gyoung Ko;Hee-Taek Park;Chan-Sik Park
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.7-13
    • /
    • 2013
  • Recently, defect management have been considered as one of the major issues for more large-sized and complicated in domestic construction industry. However, the defect management have not been performed systematically because of special manpower, excessive amount of documents, 2D based inspection work, unclear traditional checklists, complicated work process and difficulty in communicating construction information. Therefore, the construction field manager could not performed the quality inspection and defect management work on time as well as the reliability of recorded quality and defect factors was decreased. The primary objective of this study is develop a Construction Defect Management Application CDMA) using a mobile (smartphone). The application can be sharing a huge information and communication technology based on RFID (Radio-Frequency Identification), BIM (Building Information Modeling) which enables field mangers to efficiently gather the information of defection in construction on-site.

  • PDF

A Study on the Health Evaluation Method of Oil-immersed Transformer through Analysis of Insulating Oil (활선중 절연유 분석을 통한 유입변압기 건전성 평가 방법에 관한 연구)

  • Youn-Jin Shin;Jae-Yong Lim
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.6
    • /
    • pp.1-8
    • /
    • 2023
  • The health state of the oil transformer is evaluated by the age of use and the state of internal defects. Mineral Oil, used as an insulator for oil transformers, creates specific gases and compounds through chemical reactions caused by heat, moisture, and partial discharge inside the transformer. It is possible to determine the aging and defect of the transformer through these gases and compounds. So, it is an important indicator to evaluate the health of a transformer. In this study, factors for assessing the health of transformers were hierarchically categorized, and key factors for each hierarchy were selected for design weighting. These weights were determined through surveys conducted with experts in the fields of transformer design, operation, and quality. For the health of a transformer, defect-related factors are approximately three times more important than factors related to aging. Additionally, defect-related factors showed a higher weighting for gases generated at high temperatures. Furthermore, Furan was determined to have a high weight, directly associated with insulating paper aging. Based on these findings, a health index was proposed, and a comparative analysis was conducted by categorizing 40 operational transformers into normal and comparison groups to evaluate and validate it.

A Study on the Relative Importance of Quality Management Items through the Defect Analysis in the Landscape Construction Process (조경시설공사의 시공품질 분석을 통한 품질관리항목의 중요도 연구)

  • 이상석;최기수
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.25 no.3
    • /
    • pp.1-11
    • /
    • 1997
  • This study aims to estimate the relative importance of quality management items through the defect analysis in the landscape construction process. The RIQMI are decided by the defect coefficient and it's cause weight. The defect items in the landscape construction process were classified by 56 items based on the classification form of '96 landscape architectural construction standard and the cause pattern were categorized 4 types as design, material, construction, and environment factors. To analyze the defect coefficient and the aucse weight by defect, the researcher surveyed the questionnaires on the 103 engineers and the 31 experts on the landscape architectural construction. The result of this study are as follows. The relative importance by facilities pattern turn out to be much higher construction, material fator than design. environment factor in wood facilities, paving facilities, and steel facilities, the RIQMI is very high in timber crack, timber vending, faulty of timber against decay, welding faulty of steel facilities in material factor, and timber crack, faulty of timber against decay, finish faulty of steel facilities, welding faulty of steel facilities in construction factor.

  • PDF

Development of the Defect Analysis Technology for CANDU Spent Fuel

  • Kim, Yong-Chan;Lee, Jong-Hyeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.215-223
    • /
    • 2021
  • The domestic CANDU nuclear power plants have been operated for a long time and various unforeseen spent fuel defects have been discovered. As the spent fuel defects are important factors in the safety of the nuclear power plant, a study on the analysis of the spent fuel defects to prevent their recurrence is necessary. However, in cases where the fuel rods inside the fuel assembly are defected, it is difficult to dismantle the fuel assembly owing to their welded structure and the facility conditions of the plant. Therefore, it is impossible to analyze the spent fuel defect because it is difficult to visually check the shape of the fuel defect. To resolve these problems, an analysis technology that can predict the number of defected fuel rods and defect size was developed. In this study, we developed a methodology for investigating the root cause of spent fuel defects using a database of the earlier fuel defects in the plants. It is anticipated that in the future this analysis technology will be applied when spent fuel defects occur.

Impact Analysis of Construction Delay: The Case of Defects In the Top-down Construction Method

  • Suk, Janghwan;Kwon, Woobin;Soe, Jang-woo;Cho, Hunhee
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.213-221
    • /
    • 2022
  • Defects are the risk factors in the construction process of buildings. They cause damage, delaying the construction duration. They especially cause adverse effects on the top-down construction method. This study analyzed the degree of construction delay induced by each work type, focusing on defects in the top-down method. Then, we derived construction delay induction coefficient from different work types in order by using the severity of construction delay per defect and the occurrence probability of defect; this assessment model measures the impact of defects on construction delay for each work type. Furthermore, by comparing each work type based on the defect frequency and the construction delay induction coefficient, we found work types that need to be administered attentively. We identified that plastering work was easy to overlook, requiring caution in defect management. This study provides an efficient defect management system suitable for the buildings that are built using the top-down construction method.

  • PDF

A Study on the Governing Factor of Fatigue Limit in Austempered Ductile Iron (오스템퍼링 구상흑연주철의 피로한도 지배인자에 관한 연구)

  • 정회원;김진학
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.221-229
    • /
    • 1999
  • We examined the governing factors of fatigue limit in annealed and austempered ductile iron specimens machined micro hole(dia.<0.4mm) in rotary bending fatigue test. Also, the quantitative relationship between fatigue limit and maximum defect size in specimens was investigated. Artificial defect(micro-pit type, dia.<0.4mm) on specimen surface did not bring about an obvious reduction of fatigue limit in austempered ductile iton(ADI) as compared with annealed ductile iron. According to the investigation of ${\sqrt{area}}_c$ which is the critical defect size to crack initiation at artificial defect, ${\sqrt{area}}_c$ of ADI was larger than that of annealed ductile iron. This shows that the situation of crack initiation at artificial defect in ADI is more difficult in comparison with annealed ductile iron. Maximum defect size is one of the important parameters to predict fatigue limit. And, the quantitative relationship, between the fatigue limit ${\sigma}_{\omega}$ and the maximum defect size ${\sqrt{area}}_{max}$ can be expressed to ${\sigma}_{\omega}^n{\cdot}{\sqrt{area}}_{max}=C_2$ where, $C_2$ are constant. Moreover, it is possible to explain the difference in fatigue limit between, austempered and annealed ductile iron by introducing the parameter ${\delta}(=N_{sg}/N_{total})$in a plain spectimen.

  • PDF

Analysis of Equipment Factor for Smart Manufacturing System (스마트제조시스템의 설비인자 분석)

  • Ahn, Jae Joon;Sim, Hyun Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.168-173
    • /
    • 2022
  • As the function of a product is advanced and the process is refined, the yield in the fine manufacturing process becomes an important variable that determines the cost and quality of the product. Since a fine manufacturing process generally produces a product through many steps, it is difficult to find which process or equipment has a defect, and thus it is practically difficult to ensure a high yield. This paper presents the system architecture of how to build a smart manufacturing system to analyze the big data of the manufacturing plant, and the equipment factor analysis methodology to increase the yield of products in the smart manufacturing system. In order to improve the yield of the product, it is necessary to analyze the defect factor that causes the low yield among the numerous factors of the equipment, and find and manage the equipment factor that affects the defect factor. This study analyzed the key factors of abnormal equipment that affect the yield of products in the manufacturing process using the data mining technique. Eventually, a methodology for finding key factors of abnormal equipment that directly affect the yield of products in smart manufacturing systems is presented. The methodology presented in this study was applied to the actual manufacturing plant to confirm the effect of key factors of important facilities on yield.

Effects of Structure and Defect on Fatigue Limit in High Strength Ductile Irons

  • Kim, Jin-Hak;Kim, Min-Gun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.530-536
    • /
    • 2000
  • In this paper, the influence of several factors such as hardness, internal defect and non-propagating crack on fatigue limits was investigated with three kinds of ductile iron specimens. From the experimental results the fatigue limits were examined in relation with hardness and tensile strength in case of high strength specimens under austempering treatment; in consequence the marked improvement of fatigue limits were not showed. The maximum defect size was an important factor to predict and to evaluate the fatigue limits of ductile irons. And, the quantitative relationship between the fatigue limits$({\sigma}_w)$ and the maximum defect sizes $(\sqrt{area}_{max})$ was expressed as ${\sigma}_w^n{\cdot}{\sqrt{area}}_{max}=C_2$. Also, it was possible to explain the difference for the fatigue limits in three ductile irons by introduction of the non-propagating crack rates.

  • PDF

Reconstruction of a temporal scalp defect without ipsilateral donor vessel possibilities using a local transposition flap and a latissimus dorsi free flap anastomosed to the contralateral side: a case report

  • Jung Kwon An;Seong Oh Park;Lan Sook Chang;Youn Hwan Kim;Kyunghyun Min
    • Archives of Craniofacial Surgery
    • /
    • v.24 no.3
    • /
    • pp.129-132
    • /
    • 2023
  • Scalp defects necessitate diverse approaches for successful reconstruction, taking into account factors such as defect size, surrounding tissue, and recipient vessel quality. This case report presents a challenging scenario involving a temporal scalp defect where ipsilateral recipient vessels were unavailable. The defect was effectively reconstructed utilizing a transposition flap and a latissimus dorsi free flap, which was anastomosed to the contralateral recipient vessels. Our report underscores the successful reconstruction of a scalp defect in the absence of ipsilateral recipient vessels, emphasizing the importance of employing appropriate surgical interventions without necessitating vessel grafts.

Clinical study of endocardial cushion defect: 37 cases report (심내막상 결손증에 대한 임상고)

  • Jo, Jae-Il;Seo, Gyeong-Pil
    • Journal of Chest Surgery
    • /
    • v.17 no.4
    • /
    • pp.657-665
    • /
    • 1984
  • Thirty-seven patients had undergone repair of a endocardial cushion defect between 1977 and Aug. 1983 in Seoul National University Hospital. Twenty eight had a partial defect, one intermediate defect and eight complete endocardial cushion defect. Tricuspid cleft was found in 4 cases and mitral cleft was in all p-ECD. Seven patients were of type C anatomy in c-ECD. Four patients had associated major anomalies, including three TOF in c-ECD, one coarctation in p- ECD. In p-ECD patients, the septal defect was closed with patch in all cases and the atrioventricular valvular insufficiency was corrected with MVR in 4 cases, TVR in 1 case and simple interrupted sutures in remainders. In c-ECD patients the septal defect was closed with single patch except one case. The atrioventricular valve was repaired with simple interrupted sutures except one MVR and TVR case. The operative mortality was 14.2% in p-ECD, 44.4% in c-ECD, but recent 3 years [1980-1983] mortality was 8.7% in p-ECD, 20% in c-ECD. More than grade III systolic regurgitant murmur was oted postoperatively in 4 cases of c-ECD and 3 cases of p-ECD. The operative risk factors were preoperative NYHA classification, cyanosis, Rp/Rs, systolic pressure of main pulmonary artery and the degree of regurgitation of atrioventricular valves. The causes of death were low cardiac output syndromes, pulmonary complications and arrhythmias.

  • PDF