• Title/Summary/Keyword: Defect Imaging

Search Result 267, Processing Time 0.03 seconds

An experimental study on the readability of digital images in the furcal bone defects (디지털영상을 이용한 치근이개부 실험병소의 판독능에 관한 연구)

  • Kang Hyung-Wuk;Hwang Eui-Hwan;Lee Sang-Rae
    • Imaging Science in Dentistry
    • /
    • v.33 no.2
    • /
    • pp.71-77
    • /
    • 2003
  • Purpose : To evaluate and compare the efficacy of digital radiographic images in the detection of bone loss at the bifurcation area of the mandibular first molar with traditional film-based periapical radiographs, Materials and Methods : One dried human mandible with minimal periodontal bone loss around the first molar was selected and an artificial alveolar bone defect at the bifurcation area was serially prepared over 18 steps. Images were taken using a direct CCD-based system and with F-speed periapical films. The images were evaluated by seven interpreters (3 radiologists, 3 periodontologists, and 1 general dentist) using a 5-point confidence rating scale. Results : The readability of both periapical radiographs and digital image increased as the size of the artificial lesion and exposure time increased (p < 0.05). Periapical radiographs offered greater readability of smaller bone defects than digital images, and the coefficient of variation of mean score between periapical radiographs and digital images showed a significant difference. Conclusion : The experimental results indicate that a significant difference in the coefficient of variation of mean score exists between periapical radiographs and digital images, and that traditional film-based periapical images offer greater readability of smaller bone defects than digital images can presently offer.

  • PDF

Feasibility Study of Determining the Healing Phase of Achilles Tendon Rupture in Rats Using Optical Coherence Tomography

  • Kim, Young-Sik;Chae, Yu-Gyeong;Jeon, Min Yong;Kim, Dong Kyu;Ahn, Yeh-Chan
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.175-181
    • /
    • 2015
  • Optical coherence tomography (OCT) is a noninvasive technique for microscopic investigation of tissue. We thought that the OCT method could be a potential tool for monitoring the healing process of a tendon. In this study we used two rat models, denervated and non-denervated groups, to observe a variety of healing phases of Achilles tendon (AT) injury. We made samples of AT injury lesions, to take OCT images and to make histopathological samples of serial sectional tissue. In an OCT image the denervated rat showed no specific finding, but the non-denervated rat showed a large defect lesion that was scaffolding tissue. OCT findings combined with pathologic findings showed advantages in visualization of tendon microstructure over other imaging modalities such as MRI and US, and OCT is beneficial to making a treatment plan, especially the timing and intensity of rehabilitation. Therefore a multimodal platform using OCT for evaluation of tendon injury may be potentially useful for many applications.

Reconstruction of large oroantral defects using a pedicled buccal fat pad

  • Yang, Sunin;Jee, Yu-Jin;Ryu, Dong-mok
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.40
    • /
    • pp.7.1-7.5
    • /
    • 2018
  • Background: Oroantral communicating defects, characterized by a connection between the maxillary sinus and the oral cavity, are often induced by tooth extraction, removal of cysts and benign tumors, and resection of malignant tumors. The surgical defect may develop into an oroantral fistula, with resultant patient discomfort and chronic maxillary sinusitis. Small defects may close spontaneously; however, large oroantral defects generally require reconstruction. These large defects can be reconstructed with skin grafts and vascularized free flaps with or without bone graft. However, such surgical techniques are complex and technically difficult. A buccal fat pad is an effective, reliable, and straightforward material for reconstruction. Case presentation: This report describes three cases of reconstruction of large oroantral defects, all of which were covered by a pedicled buccal fat pad. Follow-up photography and radiologic imaging showed successful closure of the oroantral defects. Furthermore, there were no operative site complications, and no patient reported postsurgical discomfort. Conclusion: In conclusion, the use of the pedicled buccal fat pad is a reliable, safe, and successful method for the reconstruction of large oroantral defects.

Resolution of Protein-Losing Enteropathy after Congenital Heart Disease Repair by Selective Lymphatic Embolization

  • Kylat, Ranjit I;Witte, Marlys H;Barber, Brent J;Dori, Yoav;Ghishan, Fayez K
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.22 no.6
    • /
    • pp.594-600
    • /
    • 2019
  • With improving survival of children with complex congenital heart disease (CCHD), postoperative complications, like protein-losing enteropathy (PLE) are increasingly encountered. A 3-year-old girl with surgically corrected CCHD (ventricular inversion/L-transposition of the great arteries, ventricular septal defect, pulmonary atresia, postdouble switch procedure [Rastelli and Glenn]) developed chylothoraces. She was treated with pleurodesis, thoracic duct ligation and subsequently developed chylous ascites and PLE (serum albumin ${\leq}0.9g/dL$) and was malnourished, despite nutritional rehabilitation. Lymphangioscintigraphy/single-photon emission computed tomography showed lymphatic obstruction at the cisterna chyli level. A segmental chyle leak and chylous lymphangiectasia were confirmed by gastrointestinal endoscopy, magnetic resonance (MR) enterography, and MR lymphangiography. Selective glue embolization of leaking intestinal lymphatic trunks led to prompt reversal of PLE. Serum albumin level and weight gain markedly improved and have been maintained for over 3 years. Selective interventional embolization reversed this devastating lymphatic complication of surgically corrected CCHD.

Evaluation of morphometric features of fossa navicularis using cone-beam computed tomography in a Turkish subpopulation

  • Magat, Guldane
    • Imaging Science in Dentistry
    • /
    • v.49 no.3
    • /
    • pp.209-212
    • /
    • 2019
  • Purpose: Fossa navicularis is a bone defect in the clivus. Familiarity with this anatomical variant is important because it is close to vital anatomical structures in the base of the skull. The aim of this study was to determine the prevalence and morphometric properties of fossa navicularis within the clivus in a Turkish subpopulation using cone-beam computed tomography (CBCT). Materials and Methods: A total of 168 CBCT scans (female: 96, male: 71) were evaluated. High-quality CBCT images of patients without a syndromic condition or a history of neurological disease or surgery were included in the study. The prevalence, depth, length, and width of the fossa navicularis were performed. Results: The prevalence of fossa navicularis was 27.5% (n=46 patients). Sex was not associated with the depth, length, or width of the fossa navicularis (P>0.05). A significant positive correlation was found between age and length of the fossa navicularis(P>0.05). Conclusion: Fossa navicularis was found to be rare (27.5%). Anatomical variants of the skull base can also be clearly identified on CBCT images. The results of this study may be useful to radiologists, anatomists, and surgeons interested in the skull base.

Giant Sellar Xanthogranuloma after Surgical Treatment of Symptomatic Rathke's Cleft Cyst

  • Cho, Sung-Min;Cho, Hyok-Rae;Park, Yong-Seok;Chang, Hee-Gyeong
    • Brain Tumor Research and Treatment
    • /
    • v.6 no.2
    • /
    • pp.82-85
    • /
    • 2018
  • Extremely massive sellar xanthogranuloma (XG) are rare, and the surgical outcome and prognosis are not well known. XG remain unknown whether they are derived from Rathke's cleft cysts (RCCs) or craniopharyngiomas (CPs) following extensive inflammation and metaplasia, to the point that no epithelium is readily identifiable. These lesions usually tend to occur in younger patients (mean 28.3 years), have a smaller diameter, and remain primarily intrasellar region with infrequent calcification. This 36-year-old man presented our hospital with visual deterioration. At the time of visit, there were no neurological problems other than visual field defect and hormonal disorder. He visited our hospital in 2007 due to headache and decreased vision, and underwent transphenoid surgery for pituitary RCC. Since then, he has received treatment at our hospital for postoperative hormonal disorders. Through preoperative imaging study, the author suspected CP and underwent surgery. During the operation, the adhesion of the tumor to the surrounding major neurovascular structures was severe in the naked eyes, but the tumor could be removed more easily than expected. The postoperative histological findings were confirmed as XG. The postoperative course was uneventful. Compared to the previous literature, this case is a case where the size of XG is very large in a sellar region and it can be proved that it originated from the RCC. And regular follow-up is necessary to confirm the prognosis after surgery.

MULTI-CHANNEL VISION SYSTEM FOR ON-LINE QUANTIFICATION OF APPEARANCE QUALITY FACTORS OF APPLE

  • Lee, S. H.;S. H. Noh
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.551-559
    • /
    • 2000
  • An integrated on-line inspection system was constructed with seven cameras, half mirrors to split images, 720 nm and 970 nm band pass filters, illumination chamber having several tungsten-halogen lamps, one main computer, one color frame grabber, two 4-channel multiplexors, and flat plate conveyer, etc., so that a total of seven images, that is, one color image from the top side of an apple and two B/W images from each side (top, right and left) could be captured and displayed on a computer monitor through the multiplexor. One of the two B/W images captured from each side is 720nm filter image and the other is 970nm. With this system an on-line grading software was developed to evaluate appearance quality. On-line test results to the Fuji apples that were manually fed on the conveyer showed that grading accuracies of the color, defective and shape were 95.3%, 86% and 91%, respectively. Grading time was 0.35 sec per apple on an average. Therefore, this on-line grading system could be used for inspection of the final products produced from an apple sorting system.

  • PDF

Non-Destructive Testing of Damaged Thermoplastic Pipes Electrofusion Joints Using Phased Array Ultrasonic (위상배열초음파를 이용한 손상된 열가소성 플라스틱배관 전기융착부 비파괴검사)

  • Kil, Seong-Hee;Kim, Byung-Duk;Kwon, Jeong-Rock;Yoon, Kee-Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.5
    • /
    • pp.64-68
    • /
    • 2013
  • Non destructive testing(NDT) methods of electrofusion(EF) joints of thermoplastics pipes are required for fusion joint safety and for the long term reliability of a pipe system. Electrofusion joints, which are joined at the proper fusion process and procedures, may encounter defects due to the difference of ovality between pipes and coupling, improper fusion process or porosity result from electrofusion joining. These defects can cause the failure of pipeline and by extension, they can be caused the limit to expand the use of plastics pipes. This paper studies inspection results using ultrasonic imaging method for damaged polyethylene electrofusion joints. Gas was leaking from 250mm diameter polyethylene electrofusion joints at February 2004 which was electrofused at December 1994 and operation pressure was 2.45kPa. First, surface inspection was conducted and then in order to find the types of defects examination using ultrasonic imaging method was performed. Lack of fusion and inappropriate inserting for polyethylene pipes into electrofusion coupling were found and causes of the gas leak were judged that misalignment and insert defect. Cutting inspection was performed and each inspection results were compared to. Results of ultrasonic imaging method and cutting inspection were the same.

Development of Deep Learning Structure for Defective Pixel Detection of Next-Generation Smart LED Display Board using Imaging Device (영상장치를 이용한 차세대 스마트 LED 전광판의 불량픽셀 검출을 위한 딥러닝 구조 개발)

  • Sun-Gu Lee;Tae-Yoon Lee;Seung-Ho Lee
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.345-349
    • /
    • 2023
  • In this paper, we propose a study on the development of deep learning structure for defective pixel detection of next-generation smart LED display board using imaging device. In this research, a technique utilizing imaging devices and deep learning is introduced to automatically detect defects in outdoor LED billboards. Through this approach, the effective management of LED billboards and the resolution of various errors and issues are aimed. The research process consists of three stages. Firstly, the planarized image data of the billboard is processed through calibration to completely remove the background and undergo necessary preprocessing to generate a training dataset. Secondly, the generated dataset is employed to train an object recognition network. This network is composed of a Backbone and a Head. The Backbone employs CSP-Darknet to extract feature maps, while the Head utilizes extracted feature maps as the basis for object detection. Throughout this process, the network is adjusted to align the Confidence score and Intersection over Union (IoU) error, sustaining continuous learning. In the third stage, the created model is employed to automatically detect defective pixels on actual outdoor LED billboards. The proposed method, applied in this paper, yielded results from accredited measurement experiments that achieved 100% detection of defective pixels on real LED billboards. This confirms the improved efficiency in managing and maintaining LED billboards. Such research findings are anticipated to bring about a revolutionary advancement in the management of LED billboards.

Quantitative Assessment Technology of Small Animal Myocardial Infarction PET Image Using Gaussian Mixture Model (다중가우시안혼합모델을 이용한 소동물 심근경색 PET 영상의 정량적 평가 기술)

  • Woo, Sang-Keun;Lee, Yong-Jin;Lee, Won-Ho;Kim, Min-Hwan;Park, Ji-Ae;Kim, Jin-Su;Kim, Jong-Guk;Kang, Joo-Hyun;Ji, Young-Hoon;Choi, Chang-Woon;Lim, Sang-Moo;Kim, Kyeong-Min
    • Progress in Medical Physics
    • /
    • v.22 no.1
    • /
    • pp.42-51
    • /
    • 2011
  • Nuclear medicine images (SPECT, PET) were widely used tool for assessment of myocardial viability and perfusion. However it had difficult to define accurate myocardial infarct region. The purpose of this study was to investigate methodological approach for automatic measurement of rat myocardial infarct size using polar map with adaptive threshold. Rat myocardial infarction model was induced by ligation of the left circumflex artery. PET images were obtained after intravenous injection of 37 MBq $^{18}F$-FDG. After 60 min uptake, each animal was scanned for 20 min with ECG gating. PET data were reconstructed using ordered subset expectation maximization (OSEM) 2D. To automatically make the myocardial contour and generate polar map, we used QGS software (Cedars-Sinai Medical Center). The reference infarct size was defined by infarction area percentage of the total left myocardium using TTC staining. We used three threshold methods (predefined threshold, Otsu and Multi Gaussian mixture model; MGMM). Predefined threshold method was commonly used in other studies. We applied threshold value form 10% to 90% in step of 10%. Otsu algorithm calculated threshold with the maximum between class variance. MGMM method estimated the distribution of image intensity using multiple Gaussian mixture models (MGMM2, ${\cdots}$ MGMM5) and calculated adaptive threshold. The infarct size in polar map was calculated as the percentage of lower threshold area in polar map from the total polar map area. The measured infarct size using different threshold methods was evaluated by comparison with reference infarct size. The mean difference between with polar map defect size by predefined thresholds (20%, 30%, and 40%) and reference infarct size were $7.04{\pm}3.44%$, $3.87{\pm}2.09%$ and $2.15{\pm}2.07%$, respectively. Otsu verse reference infarct size was $3.56{\pm}4.16%$. MGMM methods verse reference infarct size was $2.29{\pm}1.94%$. The predefined threshold (30%) showed the smallest mean difference with reference infarct size. However, MGMM was more accurate than predefined threshold in under 10% reference infarct size case (MGMM: 0.006%, predefined threshold: 0.59%). In this study, we was to evaluate myocardial infarct size in polar map using multiple Gaussian mixture model. MGMM method was provide adaptive threshold in each subject and will be a useful for automatic measurement of infarct size.