• Title/Summary/Keyword: Defect Density

Search Result 464, Processing Time 0.028 seconds

Growth and Characterization of Polycrystalline Silicon Films by Hot-Wire Chemical Vapor Deposition (열선 CVD에 의해 증착된 다결정 실리콘 박막의 구조적 특성 분석)

  • Lee, J.C.;Kang, K.H.;Kim, S.K.;Yoon, K.H.;Song, J.;Park, I.J.
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.1
    • /
    • pp.1-10
    • /
    • 2001
  • Polycrystalline silicon(poly-Si) films are deposited on low temperature glass substrate by Hot-CVD(HWCVD). The structural properties of the poly-Si films are strongly dependent on the temperature$(T_w)$. The films deposited at high $T_w$ of $2000^{\circ}C$ have superior crystalline proper average lateral grain sizes are larger than $1{\mu}m$ and there are no vertical grain boundaries. The sur of the high $T_w$ samples are naturally textured like pyramid shape. These large grain size and text surface are believed to give high current density when applied to solar cells. However, the poly films are structurally porous and contains high defect density, by which high concentration of C and O resulted within the films by air-penetration after removed from chamber.

  • PDF

Variables of Electrolytic Nickel Plating for RPV Cladding Repair (압력용기 클래드 보수용 전해니켈도금 인자 관계 연구)

  • Kim, Min-Su;Hwang, Seong-Sik;Kim, Dong-Jin;Lee, Dong-Bok
    • Corrosion Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.148-153
    • /
    • 2019
  • Pure nickel with a thickness of 1 mm was plated on type 304 stainless steels and low alloy steels (JIS G3131 SPHC) by electrolytic plating method in a circulating plating bath. Plating performance, mechanical properties, and surface characteristics were evaluated in terms of pretreatment process, anode material, pH, current density, and flow rate of the plating solution. Addition of hydrochloric acid during pre-treatment process improved the adhesion performance of plating. To improve plating efficiency, it is desirable to use S-nickel rather than electrolytic nickel. The use of S-nickel was also confirmed to be desirable for maintaining the pH and concentration of the plated solution. The defect of the plating using S-nickel anode produced pit on the surface. However, it is believed that proper control can be obtained by increasing the flow rate. Internal stress and hardness values of electrolytic nickel plating according to current density need to be carried out with further studies.

Electroluminescent Characteristics of Fluorescent OLED with Alternating Current Negative Voltage (교류 음 전압에 따른 형광 OLED의 전계 발광 특성)

  • Seo, Jung-Hyun;Yang, Jae-Woong;Paek, Kyeong-Kap;Ju, Sung-Hoo
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.2
    • /
    • pp.72-77
    • /
    • 2019
  • To study the characteristics of AC driven OLED, we fabricated the fluorescent OLEDs and analyzed the electroluminescence characteristics of OLEDs with AC negative voltage. The luminance and the current density of the OLED decreased, and the number and size of the dark spots increased in proportion to the duration time and level of the applied AC negative voltage. The current efficiency of the OLED was improved when high AC negative voltage was applied within a short time. When the AC negative voltage of 10 V was applied for 1 minute, the efficiency was improved by 12.4%. Also, the degradation of luminance and current efficiency due to the duration of light emission was improved in the case of OLED applied for 1 minute with 10 V AC negative voltage. These are expected as a result of the improvement of the leakage current characteristics by eliminating the short-circuit region formed by the defect of the OLED at the AC negative high voltage. As a result, the continuous application of AC negative voltage reduced the luminance and the current density of OLED, but the temporary application of AC negative voltage with the proper time and voltage could improve the efficiency and lifetime of OLED.

Density control of ZnO nanorod arrays using ultrathin seed layer by atomic layer deposition

  • Shin, Seokyoon;Park, Joohyun;Lee, Juhyun;Choi, Hyeongsu;Park, Hyunwoo;Bang, Minwook;Lim, Kyungpil;Kim, Hyunjun;Jeon, Hyeongtag
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.5
    • /
    • pp.401-406
    • /
    • 2018
  • We investigated the effect of ZnO seed layer thickness on the density of ZnO nanorod arrays. ZnO has been deposited using two distinct processes consisting of the seed layer deposition using ALD and subsequent hydrothermal ZnO growth. Due to the coexistence of the growth and dissociation during ZnO hydrothermal growth process on the seed layer, the thickness of seed layer plays a critical role in determining the nanorod growth and morphology. The optimized thickness resulted in the regular ZnO nanorod growth. Moreover, the introduction of ALD to form the seed layer facilitates the growth of the nanorods on ultrathin seed layer and enables the densification of nanorods with a narrow change in the seed layer thickness. This study demonstrates that ALD technique can produce densely packed, virtually defect-free, and highly uniform seed layers and two distinctive processes may form ZnO as the final product via the initial nucleation step consisting of the reaction between $Zn^{2+}$ ions from respective zinc precursors and $OH^-$ ions from $H_2O$.

Analysis of Deep-Trap States in GaN/InGaN Ultraviolet Light-Emitting Diodes after Electrical Stress

  • Jeong, Seonghoon;Kim, Hyunsoo;Lee, Sung-Nam
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1879-1883
    • /
    • 2018
  • We analyzed the deep-trap states of GaN/InGaN ultraviolet light-emitting diodes (UV LEDs) before and after electrical stress. After electrical stress, the light output power dropped by 5.5%, and the forward leakage current was increased. The optical degradation mechanism could be explained based on the space-charge-limited conduction (SCLC) theory. Specifically, for the reference UV LED (before stress), two sets of deep-level states which were located 0.26 and 0.52 eV below the conduction band edge were present, one with a density of $2.41{\times}10^{16}$ and the other with a density of $3.91{\times}10^{16}cm^{-3}$. However, after maximum electrical stress, three sets of deep-level states, with respective densities of $1.82{\times}10^{16}$, $2.32{\times}10^{16}cm^{-3}$, $5.31{\times}10^{16}cm^{-3}$ were found to locate at 0.21, 0.24, and 0.50 eV below the conduction band. This finding shows that the SCLC theory is useful for understanding the degradation mechanism associated with defect generation in UV LEDs.

Evaluation of the seismic performance of butt-fusion joint in large diameter polyethylene pipelines by full-scale shaking table test

  • Jianfeng Shi;Ying Feng;Yangji Tao;Weican Guo;Riwu Yao;Jinyang Zheng
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3342-3351
    • /
    • 2023
  • High-density polyethylene (HDPE) pipelines in nuclear power plants (NPPs) have to meet high requirements for seismic performance. HDPE pipes have been proved to have good seismic performance, but joints are the weak links in the pipelines, and pipeline failures usually initiate from the defects inside the joints. Limited data are available on the seismic performance of butt-fusion joints of HDPE pipelines in NPPs, especially in terms of defects changes inside the joints after earthquakes. In this paper, full-scale shaking table tests were performed on a test section of suspended HDPE pipelines in an NPP, which included straight pipes, elbows, and 10 butt-fusion joints. During the tests, the seismic load-induced strain of the joints was analyzed by strain gauges, and it was much smaller than the internal pressure and self-weight-induced strain. Before and after the shaking table tests, phased array ultrasonic testing (PA-UT) was conducted to detect defects inside the joints. The locations, numbers, and dimensions of the defects were analyzed. It was found that defects were more likely to occur in elbows joints. No new defect was observed after the shaking table tests, and the defects showed no significant growth, indicating the satisfactory seismic performance of the butt-fusion joints.

The vortex dynamics in $Bi_2$$Sr_2$Ca$Cu_2$$O_8$single crystals unirradiated and with low-density columnar defect (저밀도 원통형 결함이 $Bi_2Sr_2CaCu_2O_8$ 단결정의 볼텍스 동역학에 미치는 영향)

  • Lee, T.W.;Lee, C.W.;Shim, S.Y.;Ha, D.H.;Kim, D.H.
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.36-40
    • /
    • 2001
  • We have studied vortex dynamics in$ Bi_2$$Sr_2$$CaCu_2$O$_{8}$single crystals of unirradiated and irradiated samples by using 100 $\times$ $100\mu\textrm{m}^2$Hall sensor. Doses equivalent magnetic fields are 20 G, 100 G and 1 kG. In the magnetization measurement, a second magnetization peak (SMP) was observed in unirradiated, 20 G dose and 100 G dose samples in contrast to 1 kG dose sample. In the unirradiated sample, the SMP was observed in the range of 18 K ~ 35 K and the amplitude of the SMP decreased with increasing temperature. With increase of the irradiation dose, temperature region and sharpness of the SMP were reduced. In the magnetic relaxation measurement, we observed that the normalized relaxation rate S decreased with increasing the irradiation dose. Our results suggest that the vortex dynamics is not greatly affected by low-density columnar defects.s.

  • PDF

Incident Light Intensity Dependences of Current Voltage Characteristics for Amorphous Silicon pin Solar Cells (비정질실리콘 pin태양전지에서 입사광 세기에 따른 전류 저압특성)

  • Jang, Jin;Park, Min
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.2
    • /
    • pp.236-242
    • /
    • 1986
  • The dependence of the current-voltage characteristics of hydrogenated amorphous silicon pin solar cells on the illumimination light intensity has been investigated. The open circuit voltage increases linearly with increasing the logarithm of light intensity up to AM 1, and nearly saturates above AM 1, indicating the open circuit voltage approaching the built-in potential of the pin solar cell above AM 1. The short circuit current density increase with light intensity in proportion to I**0.85 before and I**0.97 after light exposure. Since the series resistance devreses and shunt resistance increases with light intensily, the fill factor increases with light illumination. To increase the fill factor at high illumination in large area solar cells, t6he grid pattern on the ITO substrates should be made. Long light exposure on the solar cells gives rise to the increase of bulk resistance and defect states, resulting in the decrease of the fil factor and short circuit current density. The potential drop in the bulk of the a-Si:H pin solar cells at short circuit condition increases with decreasing temperature, and increases after long light exposure.

  • PDF

The influence of root surface distance to alveolar bone and periodontal ligament on periodontal wound healing

  • Montevecchi, Marco;Parrilli, Annapaola;Fini, Milena;Gatto, Maria Rosaria;Muttini, Aurelio;Checchi, Luigi
    • Journal of Periodontal and Implant Science
    • /
    • v.46 no.5
    • /
    • pp.303-319
    • /
    • 2016
  • Purpose: The purpose of this animal study was to perform a 3-dimensional micro-computed tomography (micro-CT) analysis in order to investigate the influence of root surface distance to the alveolar bone and the periodontal ligament on periodontal wound healing after a guided tissue regeneration (GTR) procedure. Methods: Three adult Sus scrofa domesticus specimens were used. The study sample included 6 teeth, corresponding to 2 third mandibular incisors from each animal. After coronectomy, a circumferential bone defect was created in each tooth by means of calibrated piezoelectric inserts. The experimental defects had depths of 3 mm, 5 mm, 7 mm, 9 mm, and 11 mm, with a constant width of 2 mm. One tooth with no defect was used as a control. The defects were covered with a bioresorbable membrane and protected with a flap. After 6 months, the animals were euthanised and tissue blocks were harvested and preserved for micro-CT analysis. Results: New alveolar bone was consistently present in all experimental defects. Signs of root resorption were observed in all samples, with the extent of resorption directly correlated to the vertical extent of the defect; the medial third of the root was the most commonly affected area. Signs of ankylosis were recorded in the defects that were 3 mm and 7 mm in depth. Density and other indicators of bone quality decreased with increasing defect depth. Conclusions: After a GTR procedure, the periodontal ligament and the alveolar bone appeared to compete in periodontal wound healing. Moreover, the observed decrease in bone quality indicators suggests that intrabony defects beyond a critical size cannot be regenerated. This finding may be relevant for the clinical application of periodontal regeneration, since it implies that GTR has a dimensional limit.

Effect of Mutan Isolated from Streptococcus mutans on the Healing of Bone Defect in Rat (Streptococcus mutans로부터 분리한 Mutan이 흰쥐의 골결손부 치유에 미치는 영향)

  • Kwon, Hyun-Jung;Kim, Yong Hyun;Han, Kook-Il;Jung, Eui-Gil;Han, Man-Deuk
    • Journal of dental hygiene science
    • /
    • v.15 no.2
    • /
    • pp.98-105
    • /
    • 2015
  • We investigated the effects of a mutan (water-insoluble ${\alpha}$-glucans) isolated from Streptococcus mutans on the healing of bone defect in rat. Sprague-Dawley rats were divided into control (saline-treated), lipopolysaccharide (LPS)-treated, and mutan-treated groups (n=6 per group). Experimental bone defects were surgically created with round fissure bur at the buccal surface of the left mandibular. The control groups was administered with saline solution (0.1 ml/100 g), while the LPS and mutan group was given LPS and mutan (1 mg/kg body weight) three times weekly. After 4 weeks the rats were sacrificed, the healing of bone defect was assessed by bone mineral density (BMD) and micro-computed tomography (${\mu}CT$) examination. Percent bone volume (bone volume/tissue volume [BV/TV]), trabecular thickness (Tb.Th), and trabecular number (Tb.N) parameters of ${\mu}CT$ showed higher values in control group than LPS and mutan group. Bone surface/volume ratio (BS/BV), trabecular bone pattern factor (Tb.Pf), and structure model index parameters of ${\mu}CT$ showed higher values in LPS group than mutan group. BMD values of mutan treated-alveolar bones were significantly lower for than that of the LPS group. Therefore, we suggest that mutan, water-insoluble ${\alpha}$-glucans from S. mutans may be induce the induction of periodontal diseases.