• 제목/요약/키워드: Deeping neural networks

검색결과 2건 처리시간 0.015초

Construction and verification of nonparameterized ship motion model based on deep neural network

  • Wang Zongkai;Im Nam-kyun
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2022년도 추계학술대회
    • /
    • pp.170-171
    • /
    • 2022
  • A ship's maneuvering motion model is important in a computer simulation, especially under the trend of intelligent navigation. This model is usually constructed by the hydrodynamic parameters of the ship which are generated by the principles of hydrodynamics. Ship's motion model is a nonlinear function. By using this function, ships' motion elements can be calculated, then the ship's trajectory can be predicted. Deeping neural networks can construct any linear or non-linear equation theoretically if there have enough and sufficient training data. This study constructs some kinds of deep Networks and trains this network by real ship motion data, and chooses the best one of the networks, uses real data to train it, then uses it to predict the ship's trajectory, getting some conclusions and experiences.

  • PDF

A Deeping Learning-based Article- and Paragraph-level Classification

  • Kim, Euhee
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권11호
    • /
    • pp.31-41
    • /
    • 2018
  • Text classification has been studied for a long time in the Natural Language Processing field. In this paper, we propose an article- and paragraph-level genre classification system using Word2Vec-based LSTM, GRU, and CNN models for large-scale English corpora. Both article- and paragraph-level classification performed best in accuracy with LSTM, which was followed by GRU and CNN in accuracy performance. Thus, it is to be confirmed that in evaluating the classification performance of LSTM, GRU, and CNN, the word sequential information for articles is better than the word feature extraction for paragraphs when the pre-trained Word2Vec-based word embeddings are used in both deep learning-based article- and paragraph-level classification tasks.