• 제목/요약/키워드: DeepCNN

검색결과 1,171건 처리시간 0.029초

Text Classification Method Using Deep Learning Model Fusion and Its Application

  • 신성윤;조광현;조승표;이현창
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.409-410
    • /
    • 2022
  • 본 논문은 LSTM(Long-Short Term Memory) 네트워크와 CNN 딥러닝 기법을 기반으로 하는 융합 모델을 제안하고 다중 카테고리 뉴스 데이터 세트에 적용하여 좋은 결과를 얻었다. 실험에 따르면 딥 러닝 기반의 융합 모델이 텍스트 감정 분류의 정밀도와 정확도를 크게 향상시켰다. 이 방법은 모델을 최적화하고 모델의 성능을 향상시키는 중요한 방법이 될 것이다.

  • PDF

작물분류에서 기계학습 및 딥러닝 알고리즘의 분류 성능 평가: 하이퍼파라미터와 훈련자료 크기의 영향 분석 (Performance Evaluation of Machine Learning and Deep Learning Algorithms in Crop Classification: Impact of Hyper-parameters and Training Sample Size)

  • 김예슬;곽근호;이경도;나상일;박찬원;박노욱
    • 대한원격탐사학회지
    • /
    • 제34권5호
    • /
    • pp.811-827
    • /
    • 2018
  • 본 연구의 목적은 다중시기 원격탐사 자료를 이용한 작물분류에서 기계학습 알고리즘과 딥러닝 알고리즘의 비교에 있다. 이를 위해 전라남도 해남군과 미국 Illinois 주의 작물 재배지를 대상으로 기계학습 알고리즘과 딥러닝 알고리즘에 대해 (1) 하이퍼파라미터와 (2) 훈련자료의 크기에 따른 영향을 비교 분석하였다. 비교 실험에는 기계학습 알고리즘으로 support vector machine(SVM)을 적용하고 딥러닝 알고리즘으로 convolutional neural network(CNN)를 적용하였다. 특히 CNN에서 2차원의 공간정보를 고려하는 2D-CNN과 시간차원을 확장한 구조의 3D-CNN을 적용하였다. 비교 실험 결과, 다양한 하이퍼파라미터를 고려해야 하는 CNN의 경우 SVM과 다르게 두 지역에서 정의된 하이퍼파라미터 값이 유사한 것으로 나타났다. 이러한 결과를 바탕으로 모델 최적화에 많은 시간이 소요되지만 최적화된 CNN 모델을 다른 지역으로 확장할 수 있는 전이학습의 적용 가능성이 높을 것으로 판단된다. 다음 훈련자료 크기에 따른 비교 실험 결과, SVM 보다 CNN에서 훈련자료 크기의 영향이 큰 것으로 나타났는데 특히 다양한 공간특성을 갖는 Illinois 주에서 이러한 경향이 두드러지게 나타났다. 또한 Illinois 주에서 3D-CNN의 분류 성능이 저하되는 것으로 나타났는데, 이는 모델 복잡도가 증가하면서 과적합의 영향이 발생한 것으로 판단된다. 즉 모델의 훈련 정확도는 높지만 다양한 공간특성이나 입력 자료의 잡음 효과 등으로 오히려 분류 성능이 저하된 것으로 나타났다. 이러한 결과는 대상 지역의 공간특성을 고려해 적절한 분류 알고리즘을 선택해야 하는 것을 의미한다. 또한 CNN에서 특히, 3D-CNN에서 일정 수준의 분류 성능을 담보하기 위해 다량의 훈련자료 수집이 필요하다는 것을 의미한다.

딥 러닝 기반 이미지 압축 기법의 성능 비교 분석 (Comparison Analysis of Deep Learning-based Image Compression Approaches)

  • 이용환;김흥준
    • 반도체디스플레이기술학회지
    • /
    • 제22권1호
    • /
    • pp.129-133
    • /
    • 2023
  • Image compression is a fundamental technique in the field of digital image processing, which will help to decrease the storage space and to transmit the files efficiently. Recently many deep learning techniques have been proposed to promise results on image compression field. Since many image compression techniques have artifact problems, this paper has compared two deep learning approaches to verify their performance experimentally to solve the problems. One of the approaches is a deep autoencoder technique, and another is a deep convolutional neural network (CNN). For those results in the performance of peak signal-to-noise and root mean square error, this paper shows that deep autoencoder method has more advantages than deep CNN approach.

  • PDF

딥러닝 기반의 복합 열화 영상 분류 및 복원 기법 (Classification and Restoration of Compositely Degraded Images using Deep Learning)

  • 윤정언;하지메 나가하라;박인규
    • 방송공학회논문지
    • /
    • 제24권3호
    • /
    • pp.430-439
    • /
    • 2019
  • CNN (convolutional neural network) 기반의 단일 열화 영상 복원 방법은 우수한 성능을 나타내지만 한가지의 특정 열화를 해결하는 데 맞춤화 되어있다. 본 연구에서는 복합적으로 열화 된 영상 분류 및 복원을 위한 알고리즘을 제시한다. 복합 열화 영상 분류 문제를 해결하기 위해 CNN 기반의 알고리즘인 사전 학습된 Inception-v3 네트워크를 활용하고, 영상 열화 복원을 위해 기존의 CNN 기반의 복원 알고리즘을 사용하여 툴체인을 구성한다. 실험적으로 복합 열화 영상의 복원 순서를 추정하였으며, CNN 기반의 영상 화질 측정 알고리즘의 결과와 비교하였다. 제안하는 알고리즘은 추정된 복원 순서를 바탕으로 구현되어 실험 결과를 통해 복합 열화 문제를 효과적으로 해결할 수 있음을 보인다.

데이터별 딥러닝 학습 모델의 정확도 향상을 위한 외곽선 특징 적용방안 연구 (A Study on Application Method of Contour Image Learning to improve the Accuracy of CNN by Data)

  • 권용수;황승연;신동진;김정준
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권4호
    • /
    • pp.171-176
    • /
    • 2022
  • CNN은 딥러닝의 한 종류로 이미지나 영상 데이터를 처리할 때 사용하는 신경망이다. 필터가 이미지를 순회하며 이미지의 특징을 추출하여 이미지를 구분한다. 딥러닝은 데이터가 많을수록 좋은 모델을 만들 수 있는 특징이 있고, CNN에서는 적은 데이터의 약점을 보완하기 위해 회전, 확대, 이동, 뒤집기 같은 방법의 데이터 증강이라는 기법으로 데이터의 양을 인위적으로 늘리는 방법을 사용한다. 외곽선 이미지 학습은 이미지 데이터에서 외곽선에 해당하는 영역을 추출하는 것이다. CNN 학습 시, 외곽선 이미지 학습이 기존의 데이터 증강기법과 비교하여 성능 향상의 도움이 되는지 확인하고자 한다.

Revolutionizing Brain Tumor Segmentation in MRI with Dynamic Fusion of Handcrafted Features and Global Pathway-based Deep Learning

  • Faizan Ullah;Muhammad Nadeem;Mohammad Abrar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권1호
    • /
    • pp.105-125
    • /
    • 2024
  • Gliomas are the most common malignant brain tumor and cause the most deaths. Manual brain tumor segmentation is expensive, time-consuming, error-prone, and dependent on the radiologist's expertise and experience. Manual brain tumor segmentation outcomes by different radiologists for the same patient may differ. Thus, more robust, and dependable methods are needed. Medical imaging researchers produced numerous semi-automatic and fully automatic brain tumor segmentation algorithms using ML pipelines and accurate (handcrafted feature-based, etc.) or data-driven strategies. Current methods use CNN or handmade features such symmetry analysis, alignment-based features analysis, or textural qualities. CNN approaches provide unsupervised features, while manual features model domain knowledge. Cascaded algorithms may outperform feature-based or data-driven like CNN methods. A revolutionary cascaded strategy is presented that intelligently supplies CNN with past information from handmade feature-based ML algorithms. Each patient receives manual ground truth and four MRI modalities (T1, T1c, T2, and FLAIR). Handcrafted characteristics and deep learning are used to segment brain tumors in a Global Convolutional Neural Network (GCNN). The proposed GCNN architecture with two parallel CNNs, CSPathways CNN (CSPCNN) and MRI Pathways CNN (MRIPCNN), segmented BraTS brain tumors with high accuracy. The proposed model achieved a Dice score of 87% higher than the state of the art. This research could improve brain tumor segmentation, helping clinicians diagnose and treat patients.

DeepCleanNet: Training Deep Convolutional Neural Network with Extremely Noisy Labels

  • Olimov, Bekhzod;Kim, Jeonghong
    • 한국멀티미디어학회논문지
    • /
    • 제23권11호
    • /
    • pp.1349-1360
    • /
    • 2020
  • In recent years, Convolutional Neural Networks (CNNs) have been successfully implemented in different tasks of computer vision. Since CNN models are the representatives of supervised learning algorithms, they demand large amount of data in order to train the classifiers. Thus, obtaining data with correct labels is imperative to attain the state-of-the-art performance of the CNN models. However, labelling datasets is quite tedious and expensive process, therefore real-life datasets often exhibit incorrect labels. Although the issue of poorly labelled datasets has been studied before, we have noticed that the methods are very complex and hard to reproduce. Therefore, in this research work, we propose Deep CleanNet - a considerably simple system that achieves competitive results when compared to the existing methods. We use K-means clustering algorithm for selecting data with correct labels and train the new dataset using a deep CNN model. The technique achieves competitive results in both training and validation stages. We conducted experiments using MNIST database of handwritten digits with 50% corrupted labels and achieved up to 10 and 20% increase in training and validation sets accuracy scores, respectively.

Gesture-Based Emotion Recognition by 3D-CNN and LSTM with Keyframes Selection

  • Ly, Son Thai;Lee, Guee-Sang;Kim, Soo-Hyung;Yang, Hyung-Jeong
    • International Journal of Contents
    • /
    • 제15권4호
    • /
    • pp.59-64
    • /
    • 2019
  • In recent years, emotion recognition has been an interesting and challenging topic. Compared to facial expressions and speech modality, gesture-based emotion recognition has not received much attention with only a few efforts using traditional hand-crafted methods. These approaches require major computational costs and do not offer many opportunities for improvement as most of the science community is conducting their research based on the deep learning technique. In this paper, we propose an end-to-end deep learning approach for classifying emotions based on bodily gestures. In particular, the informative keyframes are first extracted from raw videos as input for the 3D-CNN deep network. The 3D-CNN exploits the short-term spatiotemporal information of gesture features from selected keyframes, and the convolutional LSTM networks learn the long-term feature from the features results of 3D-CNN. The experimental results on the FABO dataset exceed most of the traditional methods results and achieve state-of-the-art results for the deep learning-based technique for gesture-based emotion recognition.

고해상도 정사영상을 이용한 딥러닝 기반의 산림수종 분류에 관한 연구 (A Study on the Deep Learning-based Tree Species Classification by using High-resolution Orthophoto Images)

  • 장광민
    • 한국지리정보학회지
    • /
    • 제24권3호
    • /
    • pp.1-9
    • /
    • 2021
  • 본 연구에서는 드론으로 취득한 고해상도 정사영상 자료를 이용하여, 컨볼루션 신경망(Convolution Neural Network, CNN)을 이용한 딥러닝 기법을 통해 수종에 대한 자동분류 가능성을 분석해 보고자 하였다. 수종판독을 위한 분류항목을 소나무, 자작나무, 낙엽송, 잣나무 그리고 신갈나무 5개 수종으로 선정하였다. 고해상도 정사영상과 임상도를 이용하여 총 5,000개의 데이터셋을 구축하였다. 수종분류를 위한 학습모델로 CNN 기법을 적용하였고, 데이터셋을 5:3:2의 비율로 훈련데이터, 검증테이터, 테스트데이터를 구분하여 모델의 학습 및 평가에 사용하였다. 모델의 전체 정확도는 89%로 나타났으며, 수종별 정확도는 소나무 95%, 자작나무 89%, 낙엽송 80%, 잣나무 86%, 신갈나무 98%로 나타났다.

An Analysis of Plant Diseases Identification Based on Deep Learning Methods

  • Xulu Gong;Shujuan Zhang
    • The Plant Pathology Journal
    • /
    • 제39권4호
    • /
    • pp.319-334
    • /
    • 2023
  • Plant disease is an important factor affecting crop yield. With various types and complex conditions, plant diseases cause serious economic losses, as well as modern agriculture constraints. Hence, rapid, accurate, and early identification of crop diseases is of great significance. Recent developments in deep learning, especially convolutional neural network (CNN), have shown impressive performance in plant disease classification. However, most of the existing datasets for plant disease classification are a single background environment rather than a real field environment. In addition, the classification can only obtain the category of a single disease and fail to obtain the location of multiple different diseases, which limits the practical application. Therefore, the object detection method based on CNN can overcome these shortcomings and has broad application prospects. In this study, an annotated apple leaf disease dataset in a real field environment was first constructed to compensate for the lack of existing datasets. Moreover, the Faster R-CNN and YOLOv3 architectures were trained to detect apple leaf diseases in our dataset. Finally, comparative experiments were conducted and a variety of evaluation indicators were analyzed. The experimental results demonstrate that deep learning algorithms represented by YOLOv3 and Faster R-CNN are feasible for plant disease detection and have their own strong points and weaknesses.