• Title/Summary/Keyword: DeepCNN

Search Result 1,171, Processing Time 0.03 seconds

Planetary Long-Range Deep 2D Global Localization Using Generative Adversarial Network (생성적 적대 신경망을 이용한 행성의 장거리 2차원 깊이 광역 위치 추정 방법)

  • Ahmed, M.Naguib;Nguyen, Tuan Anh;Islam, Naeem Ul;Kim, Jaewoong;Lee, Sukhan
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.1
    • /
    • pp.26-30
    • /
    • 2018
  • Planetary global localization is necessary for long-range rover missions in which communication with command center operator is throttled due to the long distance. There has been number of researches that address this problem by exploiting and matching rover surroundings with global digital elevation maps (DEM). Using conventional methods for matching, however, is challenging due to artifacts in both DEM rendered images, and/or rover 2D images caused by DEM low resolution, rover image illumination variations and small terrain features. In this work, we use train CNN discriminator to match rover 2D image with DEM rendered images using conditional Generative Adversarial Network architecture (cGAN). We then use this discriminator to search an uncertainty bound given by visual odometry (VO) error bound to estimate rover optimal location and orientation. We demonstrate our network capability to learn to translate rover image into DEM simulated image and match them using Devon Island dataset. The experimental results show that our proposed approach achieves ~74% mean average precision.

Instagram image classification with Deep Learning (딥러닝을 이용한 인스타그램 이미지 분류)

  • Jeong, Nokwon;Cho, Soosun
    • Journal of Internet Computing and Services
    • /
    • v.18 no.5
    • /
    • pp.61-67
    • /
    • 2017
  • In this paper we introduce two experimental results from classification of Instagram images and some valuable lessons from them. We have tried some experiments for evaluating the competitive power of Convolutional Neural Network(CNN) in classification of real social network images such as Instagram images. We used AlexNet and ResNet, which showed the most outstanding capabilities in ImageNet Large Scale Visual Recognition Challenge(ILSVRC) 2012 and 2015, respectively. And we used 240 Instagram images and 12 pre-defined categories for classifying social network images. Also, we performed fine-tuning using Inception V3 model, and compared those results. In the results of four cases of AlexNet, ResNet, Inception V3 and fine-tuned Inception V3, the Top-1 error rates were 49.58%, 40.42%, 30.42%, and 5.00%. And the Top-5 error rates were 35.42%, 25.00%, 20.83%, and 0.00% respectively.

A Proposal of Deep Learning Based Semantic Segmentation to Improve Performance of Building Information Models Classification (Semantic Segmentation 기반 딥러닝을 활용한 건축 Building Information Modeling 부재 분류성능 개선 방안)

  • Lee, Ko-Eun;Yu, Young-Su;Ha, Dae-Mok;Koo, Bon-Sang;Lee, Kwan-Hoon
    • Journal of KIBIM
    • /
    • v.11 no.3
    • /
    • pp.22-33
    • /
    • 2021
  • In order to maximize the use of BIM, all data related to individual elements in the model must be correctly assigned, and it is essential to check whether it corresponds to the IFC entity classification. However, as the BIM modeling process is performed by a large number of participants, it is difficult to achieve complete integrity. To solve this problem, studies on semantic integrity verification are being conducted to examine whether elements are correctly classified or IFC mapped in the BIM model by applying an artificial intelligence algorithm to the 2D image of each element. Existing studies had a limitation in that they could not correctly classify some elements even though the geometrical differences in the images were clear. This was found to be due to the fact that the geometrical characteristics were not properly reflected in the learning process because the range of the region to be learned in the image was not clearly defined. In this study, the CRF-RNN-based semantic segmentation was applied to increase the clarity of element region within each image, and then applied to the MVCNN algorithm to improve the classification performance. As a result of applying semantic segmentation in the MVCNN learning process to 889 data composed of a total of 8 BIM element types, the classification accuracy was found to be 0.92, which is improved by 0.06 compared to the conventional MVCNN.

2D and 3D Hand Pose Estimation Based on Skip Connection Form (스킵 연결 형태 기반의 손 관절 2D 및 3D 검출 기법)

  • Ku, Jong-Hoe;Kim, Mi-Kyung;Cha, Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.12
    • /
    • pp.1574-1580
    • /
    • 2020
  • Traditional pose estimation methods include using special devices or images through image processing. The disadvantage of using a device is that the environment in which the device can be used is limited and costly. The use of cameras and image processing has the advantage of reducing environmental constraints and costs, but the performance is lower. CNN(Convolutional Neural Networks) were studied for pose estimation just using only camera without these disadvantage. Various techniques were proposed to increase cognitive performance. In this paper, the effect of the skip connection on the network was experimented by using various skip connections on the joint recognition of the hand. Experiments have confirmed that the presence of additional skip connections other than the basic skip connections has a better effect on performance, but the network with downward skip connections is the best performance.

Implementation of a Classification System for Dog Behaviors using YOLI-based Object Detection and a Node.js Server (YOLO 기반 개체 검출과 Node.js 서버를 이용한 반려견 행동 분류 시스템 구현)

  • Jo, Yong-Hwa;Lee, Hyuek-Jae;Kim, Young-Hun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.1
    • /
    • pp.29-37
    • /
    • 2020
  • This paper implements a method of extracting an object about a dog through real-time image analysis and classifying dog behaviors from the extracted images. The Darknet YOLO was used to detect dog objects, and the Teachable Machine provided by Google was used to classify behavior patterns from the extracted images. The trained Teachable Machine is saved in Google Drive and can be used by ml5.js implemented on a node.js server. By implementing an interactive web server using a socket.io module on the node.js server, the classified results are transmitted to the user's smart phone or PC in real time so that it can be checked anytime, anywhere.

Channel Attention Module in Convolutional Neural Network and Its Application to SAR Target Recognition Under Limited Angular Diversity Condition (합성곱 신경망의 Channel Attention 모듈 및 제한적인 각도 다양성 조건에서의 SAR 표적영상 식별로의 적용)

  • Park, Ji-Hoon;Seo, Seung-Mo;Yoo, Ji Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.175-186
    • /
    • 2021
  • In the field of automatic target recognition(ATR) with synthetic aperture radar(SAR) imagery, it is usually impractical to obtain SAR target images covering a full range of aspect views. When the database consists of SAR target images with limited angular diversity, it can lead to performance degradation of the SAR-ATR system. To address this problem, this paper proposes a deep learning-based method where channel attention modules(CAMs) are inserted to a convolutional neural network(CNN). Motivated by the idea of the squeeze-and-excitation(SE) network, the CAM is considered to help improve recognition performance by selectively emphasizing discriminative features and suppressing ones with less information. After testing various CAM types included in the ResNet18-type base network, the SE CAM and its modified forms are applied to SAR target recognition using MSTAR dataset with different reduction ratios in order to validate recognition performance improvement under the limited angular diversity condition.

Comparison of solar power prediction model based on statistical and artificial intelligence model and analysis of revenue for forecasting policy (통계적 및 인공지능 모형 기반 태양광 발전량 예측모델 비교 및 재생에너지 발전량 예측제도 정산금 분석)

  • Lee, Jeong-In;Park, Wan-Ki;Lee, Il-Woo;Kim, Sang-Ha
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.355-363
    • /
    • 2022
  • Korea is pursuing a plan to switch and expand energy sources with a focus on renewable energy with the goal of becoming carbon neutral by 2050. As the instability of energy supply increases due to the intermittent nature of renewable energy, accurate prediction of the amount of renewable energy generation is becoming more important. Therefore, the government has opened a small-scale power brokerage market and is implementing a system that pays settlements according to the accuracy of renewable energy prediction. In this paper, a prediction model was implemented using a statistical model and an artificial intelligence model for the prediction of solar power generation. In addition, the results of prediction accuracy were compared and analyzed, and the revenue from the settlement amount of the renewable energy generation forecasting system was estimated.

Classification Method based on Graph Neural Network Model for Diagnosing IoT Device Fault (사물인터넷 기기 고장 진단을 위한 그래프 신경망 모델 기반 분류 방법)

  • Kim, Jin-Young;Seon, Joonho;Yoon, Sung-Hun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.9-14
    • /
    • 2022
  • In the IoT(internet of things) where various devices can be connected, failure of essential devices may lead to a lot of economic and life losses. For reducing the losses, fault diagnosis techniques have been considered an essential part of IoT. In this paper, the method based on a graph neural network is proposed for determining fault and classifying types by extracting features from vibration data of systems. For training of the deep learning model, fault dataset are used as input data obtained from the CWRU(case western reserve university). To validate the classification performance of the proposed model, a conventional CNN(convolutional neural networks)-based fault classification model is compared with the proposed model. From the simulation results, it was confirmed that the classification performance of the proposed model outweighed the conventional model by up to 5% in the unevenly distributed data. The classification runtime can be improved by lightweight the proposed model in future works.

Development of Radar Super Resolution Algorithm based on a Deep Learning (딥러닝 기술 기반의 레이더 초해상화 알고리즘 기술 개발)

  • Ho-Jun Kim;Sumiya Uranchimeg;Hemie Cho;Hyun-Han Kwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.417-417
    • /
    • 2023
  • 도시홍수는 도시의 주요 기능을 마비시킬 수 있는 수재해로서, 최근 집중호우로 인해 홍수 및 침수 위험도가 증가하고 있다. 집중호우는 한정된 지역에 단시간 동안 집중적으로 폭우가 발생하는 현상을 의미하며, 도시 지역에서 강우 추정 및 예보를 위해 레이더의 활용이 증대되고 있다. 레이더는 수상체 또는 구름으로부터 반사되는 신호를 분석해서 강우량을 측정하는 장비이다. 기상청의 기상레이더(S밴드)의 주요 목적은 남한에 발생하는 기상현상 탐지 및 악기상 대비이다. 관측반경이 넓기에 도시 지역에 적합하지 않는 반면, X밴드 이중편파레이더는 높은 시공간 해상도를 갖는 관측자료를 제공하기에 도시 지역에 대한 강우 추정 및 예보의 정확도가 상대적으로 높다. 따라서, 본 연구에서는 딥러닝 기반 초해상화(Super Resolution) 기술을 활용하여 저해상도(Low Resolution. LR) 영상인 S밴드 레이더 자료로부터 고해상도(High Resolution, HR) 영상을 생성하는 기술을 개발하였다. 초해상도 연구는 Nearest Neighbor, Bicubic과 같은 간단한 보간법(interpolation)에서 시작하여, 최근 딥러닝 기반의 초해상화 알고리즘은 가장 일반화된 합성곱 신경망(CNN)을 통해 연구가 이루어지고 있다. X밴드 레이더 반사도 자료를 고해상도(HR), S밴드 레이더 반사도 자료를 저해상도(LR) 입력자료로 사용하여 초해상화 모형을 구성하였다. 2018~2020년에 발생한 서울시 호우 사례를 중심으로 데이터를 구축하였다. 구축된 데이터로부터 훈련된 초해상도 심층신경망 모형으로부터 저해상도 이미지를 고해상도로 변환한 결과를 PSNR(Peak Signal-to-noise Ratio), SSIM(Structural SIMilarity)와 같은 평가지표로 결과를 평가하였다. 본 연구를 통해 기존 방법들에 비해 높은 공간적 해상도를 갖는 레이더 자료를 생산할 수 있을 것으로 기대된다.

  • PDF

Instance segmentation with pyramid integrated context for aerial objects

  • Juan Wang;Liquan Guo;Minghu Wu;Guanhai Chen;Zishan Liu;Yonggang Ye;Zetao Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.701-720
    • /
    • 2023
  • Aerial objects are more challenging to segment than normal objects, which are usually smaller and have less textural detail. In the process of segmentation, target objects are easily omitted and misdetected, which is problematic. To alleviate these issues, we propose local aggregation feature pyramid networks (LAFPNs) and pyramid integrated context modules (PICMs) for aerial object segmentation. First, using an LAFPN, while strengthening the deep features, the extent to which low-level features interfere with high-level features is reduced, and numerous dense and small aerial targets are prevented from being mistakenly detected as a whole. Second, the PICM uses global information to guide local features, which enhances the network's comprehensive understanding of an entire image and reduces the missed detection of small aerial objects due to insufficient texture information. We evaluate our network with the MS COCO dataset using three categories: airplanes, birds, and kites. Compared with Mask R-CNN, our network achieves performance improvements of 1.7%, 4.9%, and 7.7% in terms of the AP metrics for the three categories. Without pretraining or any postprocessing, the segmentation performance of our network for aerial objects is superior to that of several recent methods based on classic algorithms.