• Title/Summary/Keyword: Deep-level

Search Result 1,541, Processing Time 0.03 seconds

A Comparative Study on the Impermeability-reinforcement Performance of Old Reservoir from Injection and Deep Mixing Method through Laboratory Model Test (실내모형시험을 통한 지반혼합 및 주입공법의 노후저수지 차수 보강성능 비교 연구)

  • Song, Sang-Huwon
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.24 no.2
    • /
    • pp.45-52
    • /
    • 2022
  • Of the 17,106 domestic reservoirs(as of December 2020), 14,611 are older than 50 years, and these old reservoirs will gradually increase over time. The injection grouting method is most applied to the reinforcement method of the aging reservoir. However, the injection grouting method is not accurate in uniformity and reinforced area. An laboratory model test was conducted to evaluate the applicability of the deep mixing method, which compensated for these shortcomings, as a reservoir reinforcement method. As a result of calculating the hydraulic conductiveity for each method through the model test results, the injection grouting method was calculated as a hydraulic conductiveity value that was about 7.5 times larger than that of the deep mixing method. As a result of measuring the water level change in the laboratory model test, it was found that the water level change decreased in the injection method and deep mixing method compared to the non-reinforcement method. In addition, deep mixing method showed a water level change of about 15% based on 40 hours compared to the injection method, indicating that the water-reducing effect was superior to that of the injection method.

The Effects of high Energy(1.5MeV) B+ ion Implantation and Initial Oxygen Concentration Upon Deep Level in CZ Silicon Wafer (고 에너지 (1.5 MeV) Boron 이온 주입과 초기 산소농도 조건이 깊은 준위에 미치는 영향에 관한 연구)

  • Song, Yeong-Min;Mun, Yeong-Hui;Kim, Jong-O
    • Korean Journal of Materials Research
    • /
    • v.11 no.1
    • /
    • pp.55-60
    • /
    • 2001
  • The effect of high energy B ion implantation and initial oxygen concentration upon defect formation and gettering of metallic impurities in Czochralski silicon wafer has been studied by applying DLTS( Deep Level Transient Spectroscopy), SIMS(Secondary ton Mass Spectroscopy), BMD (Bulk Micro-Defect) analysis and TEM(Transmission Electron Microscopy). DLTS results show the signal of the deep levels not only in as-implanted samples but also in low and high temperature annealed samples. Vacancy-related deep levels in as- implanted samples were changed to metallic impurities-related deep levels with increase of annealing temperature. In the case of high temperature anneal, by showing the lower deep level concentration with increase of initial oxygen concentration, high initial oxygen concentration seems to be more effective compared with the lower initial oxygen one.

  • PDF

Stress Level Based Emotion Classification Using Hybrid Deep Learning Algorithm

  • Sivasankaran Pichandi;Gomathy Balasubramanian;Venkatesh Chakrapani
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.3099-3120
    • /
    • 2023
  • The present fast-moving era brings a serious stress issue that affects elders and youngsters. Everyone has undergone stress factors at least once in their lifetime. Stress is more among youngsters as they are new to the working environment. whereas the stress factors for elders affect the individual and overall performance in an organization. Electroencephalogram (EEG) based stress level classification is one of the widely used methodologies for stress detection. However, the signal processing methods evolved so far have limitations as most of the stress classification models compute the stress level in a predefined environment to detect individual stress factors. Specifically, machine learning based stress classification models requires additional algorithm for feature extraction which increases the computation cost. Also due to the limited feature learning characteristics of machine learning algorithms, the classification performance reduces and inaccurate sometimes. It is evident from numerous research works that deep learning models outperforms machine learning techniques. Thus, to classify all the emotions based on stress level in this research work a hybrid deep learning algorithm is presented. Compared to conventional deep learning models, hybrid models outperforms in feature handing. Better feature extraction and selection can be made through deep learning models. Adding machine learning classifiers in deep learning architecture will enhance the classification performances. Thus, a hybrid convolutional neural network model was presented which extracts the features using CNN and classifies them through machine learning support vector machine. Simulation analysis of benchmark datasets demonstrates the proposed model performances. Finally, existing methods are comparatively analyzed to demonstrate the better performance of the proposed model as a result of the proposed hybrid combination.

Could Decimal-binary Vector be a Representative of DNA Sequence for Classification?

  • Sanjaya, Prima;Kang, Dae-Ki
    • International journal of advanced smart convergence
    • /
    • v.5 no.3
    • /
    • pp.8-15
    • /
    • 2016
  • In recent years, one of deep learning models called Deep Belief Network (DBN) which formed by stacking restricted Boltzman machine in a greedy fashion has beed widely used for classification and recognition. With an ability to extracting features of high-level abstraction and deal with higher dimensional data structure, this model has ouperformed outstanding result on image and speech recognition. In this research, we assess the applicability of deep learning in dna classification level. Since the training phase of DBN is costly expensive, specially if deals with DNA sequence with thousand of variables, we introduce a new encoding method, using decimal-binary vector to represent the sequence as input to the model, thereafter compare with one-hot-vector encoding in two datasets. We evaluated our proposed model with different contrastive algorithms which achieved significant improvement for the training speed with comparable classification result. This result has shown a potential of using decimal-binary vector on DBN for DNA sequence to solve other sequence problem in bioinformatics.

포항지역 지열수의 수리지구화학적 특성

  • 고동찬;염병우;하규철;송윤호
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.453-454
    • /
    • 2004
  • Hydrogeochemical and isotopic characteristics were investigated for groundwater of Tertiary basin in southeastern part of Korea where deep drilling is in progress for geothermal investigation. According to geology, aquifer was distinguished as alluvial, tertiary sedimentary bedrock (bedrock groundwater), and fractured volcanic rock (deep groundwater). Groundwater of each aquifer is distinctively separated in Eh-pH conditions and concentrations of Cl, F, B and HCO$_3$. Deep groundwater has very low level 3H and 14C whereas alluvial groundwater has those of recent precipitation level. However one of deep groundwater show mixed characteristics in terms of hydrochemistry which indicates effect of pumping. Deep groundwater have temperature of 38 to 43$^{\circ}C$ whereas bedrock and alluvial groundwater have temperature less than 2$0^{\circ}C$. Fractured basement rock aquifer has different hydrogeologicalsetting from bedrock and alluvial aquifer considering hydrogeochemical and isotopic characteristics, and temperature.

  • PDF

High-performance of Deep learning Colorization With Wavelet fusion (웨이블릿 퓨전에 의한 딥러닝 색상화의 성능 향상)

  • Kim, Young-Back;Choi, Hyun;Cho, Joong-Hwee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.6
    • /
    • pp.313-319
    • /
    • 2018
  • We propose a post-processing algorithm to improve the quality of the RGB image generated by deep learning based colorization from the gray-scale image of an infrared camera. Wavelet fusion is used to generate a new luminance component of the RGB image luminance component from the deep learning model and the luminance component of the infrared camera. PSNR is increased for all experimental images by applying the proposed algorithm to RGB images generated by two deep learning models of SegNet and DCGAN. For the SegNet model, the average PSNR is improved by 1.3906dB at level 1 of the Haar wavelet method. For the DCGAN model, PSNR is improved 0.0759dB on the average at level 5 of the Daubechies wavelet method. It is also confirmed that the edge components are emphasized by the post-processing and the visibility is improved.

Predicting bond strength of corroded reinforcement by deep learning

  • Tanyildizi, Harun
    • Computers and Concrete
    • /
    • v.29 no.3
    • /
    • pp.145-159
    • /
    • 2022
  • In this study, the extreme learning machine and deep learning models were devised to estimate the bond strength of corroded reinforcement in concrete. The six inputs and one output were used in this study. The compressive strength, concrete cover, bond length, steel type, diameter of steel bar, and corrosion level were selected as the input variables. The results of bond strength were used as the output variable. Moreover, the Analysis of variance (Anova) was used to find the effect of input variables on the bond strength of corroded reinforcement in concrete. The prediction results were compared to the experimental results and each other. The extreme learning machine and the deep learning models estimated the bond strength by 99.81% and 99.99% accuracy, respectively. This study found that the deep learning model can be estimated the bond strength of corroded reinforcement with higher accuracy than the extreme learning machine model. The Anova results found that the corrosion level was found to be the input variable that most affects the bond strength of corroded reinforcement in concrete.

Comparative Analysis of Siting Criteria of High-Level Radioactive Waste Disposal in Leading Countries (해외국가별 고준위방사성폐기물 처분 후보부지 조사를 위한 기준 분석)

  • Taeyoo Na;Byung-Gon Chae;Eui-Seob Park;Min-Jun Kim
    • The Journal of Engineering Geology
    • /
    • v.34 no.1
    • /
    • pp.117-136
    • /
    • 2024
  • Deep geological disposal of high-level radioactive waste is imperative to national safety and environmental protection and it relies on establishing siting criteria suited to the geological and social conditions of each country. This paper compares the various geological and social criteria applied by different countries in the process of securing sites for the deep geological disposal of high-level radioactive waste. The present comparative analysis considers the siting criteria established by the worlds leading countries in high-level radioactive waste disposal with the aims of establishing detailed criteria appropriate to Korea's conditions and applying the criteria to explore safe and suitable sites for deep geological disposal. The findings of this research are expected to serve as a foundation for establishing criteria for the selection of disposal sites for high-level radioactive waste in Korea and are anticipated to contribute significantly to sustainable national development and environmental protection.

Creep-permeability behavior of sandstone considering thermal-damage

  • Hu, Bo;Yang, Sheng-Qi;Tian, Wen-Ling
    • Geomechanics and Engineering
    • /
    • v.18 no.1
    • /
    • pp.71-83
    • /
    • 2019
  • This investigation presented conventional triaxial and creep-permeability tests on sandstones considering thermally-induced damage (TID). The TID had no visible effects on rock surface color, effective porosity and permeability below $300^{\circ}C$ TID level. The permeability enlarged approximately two orders of magnitude as TID increased to $1000^{\circ}C$ level. TID of $700^{\circ}C$ level was a threshold where the influence of TID on the normalized mass and volume of the specimen can be divided into two linear phases. Moreover, no prominent variations in the deformation moduli and peak strength and strain appeared as TID< $500^{\circ}C$ level. It is interesting that the peak strength increased by 24.3% at $700^{\circ}C$ level but decreased by 11.5% at $1000^{\circ}C$ level. The time-related deformation and steady-state creep rate had positive correlations with creep loading and the TID level, whereas the instantaneous modulus showed the opposite. The strain rates under creep failure stresses raised 1-4 orders of magnitude than those at low-stress levels. The permeability was not only dependent on the TID level but also dependent on creep deformation. The TID resulted in large deformation and complexity of failure pattern for the sandstone.

The Competitiveness of the Korean Deep-sea Fisheries Firms : A Qualitative Analysis (우리나라 원양업체의 경쟁력 분석 : 정성적 분석을 중심으로)

  • 김창완;정형찬;장영수
    • The Journal of Fisheries Business Administration
    • /
    • v.31 no.1
    • /
    • pp.95-113
    • /
    • 2000
  • This paper aims to analyze the competitiveness of the Korean Deep-sea Fisheries firms in the firm level. The extant researches on this topic have been done mainly in the macro-or industry-level perspectives and depended on the quantitative analyses using the aggregated data. The results of these researches are useful to figure out the main features of the industy, however, hardly give any implications on the strategic or competitiveness-related problems in the firm level. To accomplish the research purposes this study analyzes the competitiveness of the Korean Fisheries firms on the value chain scheme using qualitative tools. Specifically this paper focuses on the industry competition characteristics, key success factors, the competitiveness, and the supporting systems and policies of the Korean Government. Data are gathered by questionaire and analyzed by factor analysis and Kruska-Wallis one-way ANOVA. The results shows that the competitiveness of the Korean Deep-sea Fisheries firms is not behind the foreign competitors. However the resource securing, the market development, R&D investment are the main obstacles to the firms. The governmental supports are kedined to improve the competitiveness of the Korean Deep-sea Fisheries firms.

  • PDF