본 연구는 강우 발생시 유량을 추정하는 것에 목적이 있다. 이를 위해 본 연구는 선행연구의 모형 개발방법론에서 벗어나 딥러닝 알고리즘 중 하나인 합성곱 신경망 (convolution neural network)과 수문학적 이미지 (hydrological image)를 이용하여 강우 발생시 유량을 추정하였다. 합성곱 신경망은 일반적으로 분류 문제 (classification)을 해결하기 위한 목적으로 개발되었기 때문에 불특정 연속변수인 유량을 모의하기에는 적합하지 않다. 이를 위해 본 연구에서는 합성곱 신경망의 완전 연결층 (Fully connected layer)를 개선하여 연속변수를 모의할 수 있도록 개선하였다. 대부분 합성곱 신경망은 RGB (red, green, blue) 사진 (photograph)을 이용하여 해당 사진이 나타내는 것을 예측하는 목적으로 사용하지만, 본 연구의 경우 일반 RGB 사진을 이용하여 유출량을 예측하는 것은 경험적 모형의 전제(독립변수와 종속변수의 관계)를 무너뜨리는 결과를 초래할 수 있다. 이를 위해 본 연구에서는 임의의 유역에 대해 2차원 공간에서 무차원의 수문학적 속성을 갖는 grid의 집합으로 정의되는 수문학적 이미지는 입력자료로 활용했다. 합성곱 신경망의 구조는 Convolution Layer와 Pulling Layer가 5회 반복하는 구조로 설정하고, 이후 Flatten Layer, 2개의 Dense Layer, 1개의 Batch Normalization Layer를 배열하고, 다시 1개의 Dense Layer가 이어지는 구조로 설계하였다. 마지막 Dense Layer의 활성화 함수는 분류모형에 이용되는 softmax 또는 sigmoid 함수를 대신하여 회귀모형에서 자주 사용되는 Linear 함수로 설정하였다. 이와 함께 각 층의 활성화 함수는 정규화 선형함수 (ReLu)를 이용하였으며, 모형의 학습 평가 및 검정을 판단하기 위해 MSE 및 MAE를 사용했다. 또한, 모형평가는 NSE와 RMSE를 이용하였다. 그 결과, 모형의 학습 평가에 대한 MSE는 11.629.8 m3/s에서 118.6 m3/s로, MAE는 25.4 m3/s에서 4.7 m3/s로 감소하였으며, 모형의 검정에 대한 MSE는 1,997.9 m3/s에서 527.9 m3/s로, MAE는 21.5 m3/s에서 9.4 m3/s로 감소한 것으로 나타났다. 또한, 모형평가를 위한 NSE는 0.7, RMSE는 27.0 m3/s로 나타나, 본 연구의 모형은 양호(moderate)한 것으로 판단하였다. 이에, 본 연구를 통해 제시된 방법론에 기반을 두어 CNN 모형 구조의 확장과 수문학적 이미지의 개선 또는 새로운 이미지 개발 등을 추진할 경우 모형의 예측 성능이 향상될 수 있는 여지가 있으며, 원격탐사 분야나, 위성 영상을 이용한 전 지구적 또는 광역 단위의 실시간 유량 모의 분야 등으로의 응용이 가능할 것으로 기대된다.
최근 계측 기술의 발전으로 압력계와 유량계 등 다양한 센서를 설치하여 상수도관망의 상태를 효과적으로 파악할 수 있게 되었으나, 도시가 광범위하게 개발됨에 따라 계측 신뢰도에 영향을 미치는 변수는 다양해지고 있다. 특히 상수도관망 분석에 중요한 영향력을 가지는 수요 데이터의 경우 직접 계측의 난이도가 높고 결측이 발생하기 쉬운 것으로 알려져 데이터 생성의 중요도가 증가하고 있다. 본 논문에서는 상수도관망에서 누락된 데이터를 정확하게 생성하기 위해 생성적 딥러닝 모델에 기반한 적대적 학습 기반 오토인코더(ATAE) 모델을 제안한다. 제안된 모델은 판별 신경망과 생성 신경망의 두 가지 신경망의 적대적 학습을 사용하여 압력 데이터로부터 수요 데이터를 생성한다. 학습이 완료된 ATAE 모델의 생성 신경망은 관망의 계측되는 압력 데이터가 존재하는 경우, 그로부터 추정된 관망 수요 데이터를 제공할 수 있다. ATAE 모델은 미국 텍사스주 오스틴의 실제 상수도망에 적용되어 성능이 검증되었다. 수요 및 압력 시계열 데이터의 불확실성 정도에 따른 ATAE 예측 결과의 정확도를 비교하여 데이터 불확실성의 영향을 분석하였으며, 또한 수요 수준에 따른 데이터 수집 기간별 생성 결과를 비교하여 이에 따른 데이터 생성 성능을 검토하였다.
최근에 우리나라에서 뿐만 아니라, 세계 곳곳에서 태풍, 산불, 장마 등으로 인한 재해가 끊이지 않고 있고, 우리나라 태풍 및 호우로 인한 재산 피해액만 1조원이 넘고 있다. 이러한 재난으로 인해 많은 인명 및 물적 피해가 발생하고, 복구하는 데도 상당한 기간이 걸리며, 정부 예비비도 부족한 실정이다. 이러한 문제점들을 사전에 예방하고 효과적으로 대응하기 위해서는 우선 정확한 데이터를 실시간 수집하고 분석하는 작업이 필요하다. 그러나, 센서들이 위치한 환경, 통신 네트워크 및 수신 서버들의 상황에 따라 지연 및 데이터 손실 등이 발생할 수 있다. 따라서, 본 논문에서는 이러한 통신네트워크 상황에서도 분석을 정확하게 할 수 있는 2단계 하이브리드 상황 분석 및 예측 알고리즘을 제안한다. 1단계에서는 이기종의 다양한 센서로부터 강, 하천, 수위 및 경사지의 경사각 데이터를 수집/필터링/정제하여 빅데이터 DB에 저장하고, 인공지능 규칙기반 추론 알고리즘을 적용하여, 위기 경보 4단계를 판단한다. 강수량이 일정값 이상인데도 불구하고 1단계 결과가 관심 이하 단계에 있으면, 2단계 딥러닝 영상 분석을 수행한 후 최종 위기 경보단계를 결정한다.
이 연구의 목적은 대학의 자기 서사 글쓰기 수업의 교재와 관련 논의, 수업 사례를 분석하고, 이를 통해 교육 방안을 모색하는 데 있다. 자신을 인식하고 표현하여 소통하는 학습인 자기 서사 글쓰기 교과는 입시 위주의 교육을 거쳐 대학생이 되었을 때 더욱 그 필요성이 강조된다. 연구 방법과 결과는 다음과 같다. 첫째, 자기 서사 글쓰기가 포함된 3개 대학의 교재를 비교 분석하였다. 자기 성찰이 온전히 이루어지기 위해서는 교과 과정 내에 포함된 부분적인 수업 진행으로는 한계가 있으므로 이러한 목표에 집중하여 장기간 이루어질 수 있는 교재 구성이 필요하다. 둘째, 자기 서사 글쓰기 수업에 대한 기존의 논의와 실제 사례를 통해 자기 서사 글쓰기의 교육 방안을 분석하였다. 자기 서사 글쓰기가 효과적으로 이루어지기 위해서는 면밀한 자기 성찰과 이를 글쓰기로 연결하기 위한 단계별 접근이 이루어져야 한다. 또한, 글쓰기 과정 동안 다양한 첨삭과 피드백 활동이 거시적이고 단계적으로 진행되어야 하며, 교수자와 학생뿐 아니라 학생과 학생 간의 소통과 피드백이 필요하다. 이 연구를 통해 자기 서사 글쓰기의 보완점과 교육 방향을 모색함으로써 자기 서사 글쓰기의 수업 모델을 정립하는 데 도움이 될 것으로 기대한다.
컨테이너 터미널에서 컨테이너를 하역하고 이송하는 작업 소요시간은 항만 생산성과 직결되는 요소 중 하나로 작업 소요시간의 최소화는 항만 생산성의 극대화를 야기할 수 있다. 컨테이너의 작업 소요시간 중 선석과 야드 간 컨테이너의 이송을 담당하는 야드 트랙터(Yard Tractor; Y/T)의 작업시간이 큰 부분을 차지한다고 할 수 있다. 그러나 현재 야드 트랙터의 작업시간은 터미널 운영 실무자 경험에 기반한 추정은 가능하나, 이를 정량적으로 추정하기는 어려운 실정이다. 최근, 4차 산업혁명 핵심기술 중 하나인 IoT(Internet Of Things)를 기반으로 항만 내 물류자원을 실시간으로 모니터링 및 추적하여 작업시간을 산정하는 기술이 연구되고 있지만 이를 실제 항만 현장에서 상용화하기에는 어려운 단계이다. 따라서, 본 연구에서는 컨테이너 터미널 운영 효율화를 위해 야드 트랙터 작업시간 예측 모형을 개발한다. 예측 모형의 개발을 위해 실제 항만 운영 데이터를 분석하여 야드 트랙터의 작업에 영향을 끼치는 요인을 분석하고, 이에 따른 야드 트랙터의 작업시간을 예측한다.
항공산업의 급격한 성장으로 인해 많은 항공사가 생기면서 고객들이 항공사를 선택할 때 고려하는 요소가 늘어나고 있다. 이에 따라 항공사는 고품질의 서비스와 차별화된 경험적 가치를 제공하여 고객가치를 높이고 있다. 초기 고객가치 연구는 제품 및 서비스에 대한 효용성의 관점에서 비용과 편익 간의 상충관계로 간주하고 실용적 가치 중심으로 이루어졌지만, 최근에는 경험적 측면의 가치의 중요성이 주목받았다. 그러나 경험적 측면의 가치는 제품이나 서비스 상황에 따라 고객가치를 구성하는 요소가 변화되기 때문에 제품이나 서비스에 대한 고객의 선호도를 충분히 나타내는 특정 맥락에서 조사해야 한다. 또한, 고객가치는 고객이 의사결정을 내릴 때 큰 영향을 미치므로 항공사는 고객가치를 구성하는 요소를 정확하게 이해하는 것이 필요하다. 따라서 본 연구에서는 항공 전문 웹사이트인 스카이트랙스(Skytrax)에서 고객이 작성한 리뷰와 평점을 수집하고 BERTopic 모델을 활용하여 고객가치에 대한 요소를 도출하였다. 분석 결과, 항공사에서 고객가치를 구성하는 9가지 요소를 파악하였으며 이 중 6가지 요소가 고객 만족도와 영향을 미침을 확인하였다. 이를 통해 본 연구는 고객가치의 세분화된 파악을 가능하게 하는 새로운 방법론을 제안하고, 항공사에 구체적인 서비스 품질 향상을 위한 방향을 제시한다는 의의와 시사점을 가진다.
안전점검 대상 노후 건축물이 증가함에 따라 안전관리 주체인 지정기관 및 관리주체의 부담이 증가하고 있다. 이에 안전점검 대상 건축물 선정에 있어 적절한 안전전검 기준과 그에 따르는 적절한 기술은 필수적이다. 현행 노후 건축물 대상 안전점검 수행 기준은 마감재로 인해 구조 부재 균열 등의 손상 확인이 어려울 경우 낮은 점수를 부여하고 있다. 이는 구조물의 실체 안전상태와 관계없이 평가 결과가 과소평가되어 안전점검 대상 노후화 건축물을 증가시키는 원인이다. 이에 본 연구에서는 마감재 내부의 균열 탐지를 위해 비파괴·비접촉 검사인 열화상 기법을 제안하였다. 열화상 카메라를 이용한 마감재 내부 균열 관측을 위해 콘크리트 시편을 제작하였으며, 콘크리트 표면 및 균열부에 열원을 가진하여 열화상 데이터를 계측하였다. 계측 결과, 너비 0.3mm, 0.5mm, 0.7mm의 마감재 내부 균열 관측이 가능함을 확인하였으나, 표면 박리, 도배지 들뜸으로 인한 불균일한 온도 분포로 인해 균열 판단이 어렵다. 이에 열화상 데이터의 진폭 및 위상 차이를 도출하여 데이터 분석을 수행한 결과, 0.5mm, 0.7mm 균열에 대해 선명한 균열 계측이 가능하였다. 본 연구를 토대로 추후 마감재 내부 균열 손상 진단에 있어 빅 데이터 기반 딥러닝을 이용한 기술개발을 통해 현장적용 및 분석의 효율성을 증대시키고자 한다.
본 연구는 미국 S&P 500 지수를 변동성 돌파 전략을 활용하여 Buy and Hold 방식과 비교 분석한 연구이다. 변동성 돌파 전략은 시장의 상대적 안정 또는 집중된 시기 후의 가격 움직임을 활용하는 거래 전략이다. 특히, 낮은 변동성 기간 후에 큰 가격 움직임이 더 자주 발생한다는 것이 관찰된다. 주식이 한동안 좁은 가격 범위에서 움직이다가 가격이 갑작스레 상승 또는 하락하는 경우, 그 주식이 해당 방향으로 계속 움직일 것으로 예상된다. 이러한 움직임을 활용하기 위해 거래자들은 변동성 돌파 전략을 채택한다. 'k' 값은 최근 시장 변동성의 측정값에 곱하는 배수로서 활용된다. 변동성의 측정 방법 중 하나로는 최근 거래일의 최고가와 최저가 차이를 나타내는 평균 진정 범위(ATR)가 있다. 'k' 값은 거래자들이 거래 임계값을 설정하는 데 중요한 역할을 한다. 본 연구는 'k' 값을 일반적인 값으로 연산하여 Buy and Hold 전략과 수익률을 비교 하여, 변동성 돌파전략을 사용한 알고리즘 트레이딩이 약간은 높은 수익률을 이룩하였다. 추후에는 인공 지능 딥러닝 기법을 이용하여 S&P 500 지수의 자동 거래를 위한 최적의 K 값을 구하고, 이를 통해 수익률을 극대화하기 위한 시뮬레이션 결과를 제시할 예정이다.
최근 심각한 기후변화, 기상이상 현상 등으로 인해 자연재난의 발생빈도 및 규모가 증가하고 있다. 대형화 재난 발생 시 시간·경제적 제약으로 인해 인공위성, 드론 등 원격탐사 기반의 재난관리의 필요성이 대두되고 있다. 본 연구에서는 재난 발생 시 활용가능한 국내·외 위성들과 최근 우주산업 활성화에 따라 운용 중 및 개발 중인 차세대중형위성, 초소형위성의 현황과 대량의 위성영상들의 활용 기술 동향에 대해 정리하였다. 분석 기술로는 딥러닝의 근간인 인공지능 기술을 접목한 연구들이 있으며, 사용자 중심의 분석 준비 데이터(analysis ready data)를 활용할 수 있는 주요 플랫폼을 소개하였다. 또한 최근 발생된 대형재난인 홍수, 산사태, 가뭄, 산불을 중심으로 위성영상을 활용하여 피해분석을 함으로써 재난관리에 어떻게 활용될 수 있는지에 대해 확인하였다. 마지막으로 개발될 위성을 고려하여 재난 관리 단계별 활용방안에 대해 제시하였다. 본 연구를 통해 위성개발 및 운영현황, 최신 위성영상 분석기술 동향과 다종 위성영상을 활용한 재난대응 방안에 대해 제시되었다. 재난 진행단계에서는 예방과 대비 보다는 대응과 복구에 대한 위성영상의 활용도가 높은 것을 확인할 수 있었다. 향후 다종의 영상이 수급되었을 때 효과적인 재난관리를 위해 인공지능, 딥러닝 등 최신기술 융합 방안과 적용 가능성에 대한 연구를 수행할 예정이다.
최근 빅데이터 및 딥러닝 기술의 발전으로 다양한 교통정보가 널리 수집 및 활용되고 있다. 특히 시계열 특성을 갖는 교통정보 예측 분야에서는 장단기 메모리(long short term memory, LSTM)가 널리 사용되고 있다. LSTM에 입력되는 시계열 데이터의 추세, 계절성, 주기 등이 상이하기 때문에 시계열 데이터를 기반으로 한 예측 모델에서도 데이터의 특성에 따라 하이퍼 파라미터의 적합한 값을 찾는 시행착오법이 필수적이다. 이에 적합한 하이퍼 파라미터를 찾는 방법론이 정립된다면, 정확도가 높은 모델 구성에 소요되는 시간을 줄일 수 있다. 따라서, 본 연구에서는 국내 고속도로 차량검지기 데이터와 LSTM을 기반으로 교통정보 예측 모델을 개발하였으며, LSTM의 하이퍼 파라미터별 평가지표 변화를 통해 예측 결과에 미치는 영향평가를 수행하였다. 또한, 이를 기반으로 교통분야에서 고속도로 교통정보 예측에 적합한 하이퍼 파라미터를 찾는 방법론을 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.