• 제목/요약/키워드: Deep-Learning

검색결과 5,689건 처리시간 0.035초

딥러닝 알고리즘을 이용한 강우 발생시의 유량 추정에 관한 연구 (A study on discharge estimation for the event using a deep learning algorithm)

  • 송철민
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.246-246
    • /
    • 2021
  • 본 연구는 강우 발생시 유량을 추정하는 것에 목적이 있다. 이를 위해 본 연구는 선행연구의 모형 개발방법론에서 벗어나 딥러닝 알고리즘 중 하나인 합성곱 신경망 (convolution neural network)과 수문학적 이미지 (hydrological image)를 이용하여 강우 발생시 유량을 추정하였다. 합성곱 신경망은 일반적으로 분류 문제 (classification)을 해결하기 위한 목적으로 개발되었기 때문에 불특정 연속변수인 유량을 모의하기에는 적합하지 않다. 이를 위해 본 연구에서는 합성곱 신경망의 완전 연결층 (Fully connected layer)를 개선하여 연속변수를 모의할 수 있도록 개선하였다. 대부분 합성곱 신경망은 RGB (red, green, blue) 사진 (photograph)을 이용하여 해당 사진이 나타내는 것을 예측하는 목적으로 사용하지만, 본 연구의 경우 일반 RGB 사진을 이용하여 유출량을 예측하는 것은 경험적 모형의 전제(독립변수와 종속변수의 관계)를 무너뜨리는 결과를 초래할 수 있다. 이를 위해 본 연구에서는 임의의 유역에 대해 2차원 공간에서 무차원의 수문학적 속성을 갖는 grid의 집합으로 정의되는 수문학적 이미지는 입력자료로 활용했다. 합성곱 신경망의 구조는 Convolution Layer와 Pulling Layer가 5회 반복하는 구조로 설정하고, 이후 Flatten Layer, 2개의 Dense Layer, 1개의 Batch Normalization Layer를 배열하고, 다시 1개의 Dense Layer가 이어지는 구조로 설계하였다. 마지막 Dense Layer의 활성화 함수는 분류모형에 이용되는 softmax 또는 sigmoid 함수를 대신하여 회귀모형에서 자주 사용되는 Linear 함수로 설정하였다. 이와 함께 각 층의 활성화 함수는 정규화 선형함수 (ReLu)를 이용하였으며, 모형의 학습 평가 및 검정을 판단하기 위해 MSE 및 MAE를 사용했다. 또한, 모형평가는 NSE와 RMSE를 이용하였다. 그 결과, 모형의 학습 평가에 대한 MSE는 11.629.8 m3/s에서 118.6 m3/s로, MAE는 25.4 m3/s에서 4.7 m3/s로 감소하였으며, 모형의 검정에 대한 MSE는 1,997.9 m3/s에서 527.9 m3/s로, MAE는 21.5 m3/s에서 9.4 m3/s로 감소한 것으로 나타났다. 또한, 모형평가를 위한 NSE는 0.7, RMSE는 27.0 m3/s로 나타나, 본 연구의 모형은 양호(moderate)한 것으로 판단하였다. 이에, 본 연구를 통해 제시된 방법론에 기반을 두어 CNN 모형 구조의 확장과 수문학적 이미지의 개선 또는 새로운 이미지 개발 등을 추진할 경우 모형의 예측 성능이 향상될 수 있는 여지가 있으며, 원격탐사 분야나, 위성 영상을 이용한 전 지구적 또는 광역 단위의 실시간 유량 모의 분야 등으로의 응용이 가능할 것으로 기대된다.

  • PDF

적대적 학습 기반 오토인코더(ATAE)를 이용한 다차원 상수도관망 데이터 생성 (Multidimensional data generation of water distribution systems using adversarially trained autoencoder)

  • 김세형;전상훈;정동휘
    • 한국수자원학회논문집
    • /
    • 제56권7호
    • /
    • pp.439-449
    • /
    • 2023
  • 최근 계측 기술의 발전으로 압력계와 유량계 등 다양한 센서를 설치하여 상수도관망의 상태를 효과적으로 파악할 수 있게 되었으나, 도시가 광범위하게 개발됨에 따라 계측 신뢰도에 영향을 미치는 변수는 다양해지고 있다. 특히 상수도관망 분석에 중요한 영향력을 가지는 수요 데이터의 경우 직접 계측의 난이도가 높고 결측이 발생하기 쉬운 것으로 알려져 데이터 생성의 중요도가 증가하고 있다. 본 논문에서는 상수도관망에서 누락된 데이터를 정확하게 생성하기 위해 생성적 딥러닝 모델에 기반한 적대적 학습 기반 오토인코더(ATAE) 모델을 제안한다. 제안된 모델은 판별 신경망과 생성 신경망의 두 가지 신경망의 적대적 학습을 사용하여 압력 데이터로부터 수요 데이터를 생성한다. 학습이 완료된 ATAE 모델의 생성 신경망은 관망의 계측되는 압력 데이터가 존재하는 경우, 그로부터 추정된 관망 수요 데이터를 제공할 수 있다. ATAE 모델은 미국 텍사스주 오스틴의 실제 상수도망에 적용되어 성능이 검증되었다. 수요 및 압력 시계열 데이터의 불확실성 정도에 따른 ATAE 예측 결과의 정확도를 비교하여 데이터 불확실성의 영향을 분석하였으며, 또한 수요 수준에 따른 데이터 수집 기간별 생성 결과를 비교하여 이에 따른 데이터 생성 성능을 검토하였다.

하이브리드 빅데이터 분석을 통한 홍수 재해 예측 및 예방 (Flood Disaster Prediction and Prevention through Hybrid BigData Analysis)

  • 엄기열;이재현
    • 한국빅데이터학회지
    • /
    • 제8권1호
    • /
    • pp.99-109
    • /
    • 2023
  • 최근에 우리나라에서 뿐만 아니라, 세계 곳곳에서 태풍, 산불, 장마 등으로 인한 재해가 끊이지 않고 있고, 우리나라 태풍 및 호우로 인한 재산 피해액만 1조원이 넘고 있다. 이러한 재난으로 인해 많은 인명 및 물적 피해가 발생하고, 복구하는 데도 상당한 기간이 걸리며, 정부 예비비도 부족한 실정이다. 이러한 문제점들을 사전에 예방하고 효과적으로 대응하기 위해서는 우선 정확한 데이터를 실시간 수집하고 분석하는 작업이 필요하다. 그러나, 센서들이 위치한 환경, 통신 네트워크 및 수신 서버들의 상황에 따라 지연 및 데이터 손실 등이 발생할 수 있다. 따라서, 본 논문에서는 이러한 통신네트워크 상황에서도 분석을 정확하게 할 수 있는 2단계 하이브리드 상황 분석 및 예측 알고리즘을 제안한다. 1단계에서는 이기종의 다양한 센서로부터 강, 하천, 수위 및 경사지의 경사각 데이터를 수집/필터링/정제하여 빅데이터 DB에 저장하고, 인공지능 규칙기반 추론 알고리즘을 적용하여, 위기 경보 4단계를 판단한다. 강수량이 일정값 이상인데도 불구하고 1단계 결과가 관심 이하 단계에 있으면, 2단계 딥러닝 영상 분석을 수행한 후 최종 위기 경보단계를 결정한다.

대학생 자기 서사 글쓰기의 교육 방안 연구 (A Study on the Educational Methods of Self-Narrative Writing for University Students)

  • 김현주;양영하
    • 문화기술의 융합
    • /
    • 제9권2호
    • /
    • pp.357-366
    • /
    • 2023
  • 이 연구의 목적은 대학의 자기 서사 글쓰기 수업의 교재와 관련 논의, 수업 사례를 분석하고, 이를 통해 교육 방안을 모색하는 데 있다. 자신을 인식하고 표현하여 소통하는 학습인 자기 서사 글쓰기 교과는 입시 위주의 교육을 거쳐 대학생이 되었을 때 더욱 그 필요성이 강조된다. 연구 방법과 결과는 다음과 같다. 첫째, 자기 서사 글쓰기가 포함된 3개 대학의 교재를 비교 분석하였다. 자기 성찰이 온전히 이루어지기 위해서는 교과 과정 내에 포함된 부분적인 수업 진행으로는 한계가 있으므로 이러한 목표에 집중하여 장기간 이루어질 수 있는 교재 구성이 필요하다. 둘째, 자기 서사 글쓰기 수업에 대한 기존의 논의와 실제 사례를 통해 자기 서사 글쓰기의 교육 방안을 분석하였다. 자기 서사 글쓰기가 효과적으로 이루어지기 위해서는 면밀한 자기 성찰과 이를 글쓰기로 연결하기 위한 단계별 접근이 이루어져야 한다. 또한, 글쓰기 과정 동안 다양한 첨삭과 피드백 활동이 거시적이고 단계적으로 진행되어야 하며, 교수자와 학생뿐 아니라 학생과 학생 간의 소통과 피드백이 필요하다. 이 연구를 통해 자기 서사 글쓰기의 보완점과 교육 방향을 모색함으로써 자기 서사 글쓰기의 수업 모델을 정립하는 데 도움이 될 것으로 기대한다.

컨테이너 터미널 야드 트랙터 작업시간 예측 모형 개발 (Development of Prediction Model for Yard Tractor Working Time in Container Terminal)

  • 신재영;이도은;김영일
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2023년도 춘계학술대회
    • /
    • pp.57-58
    • /
    • 2023
  • 컨테이너 터미널에서 컨테이너를 하역하고 이송하는 작업 소요시간은 항만 생산성과 직결되는 요소 중 하나로 작업 소요시간의 최소화는 항만 생산성의 극대화를 야기할 수 있다. 컨테이너의 작업 소요시간 중 선석과 야드 간 컨테이너의 이송을 담당하는 야드 트랙터(Yard Tractor; Y/T)의 작업시간이 큰 부분을 차지한다고 할 수 있다. 그러나 현재 야드 트랙터의 작업시간은 터미널 운영 실무자 경험에 기반한 추정은 가능하나, 이를 정량적으로 추정하기는 어려운 실정이다. 최근, 4차 산업혁명 핵심기술 중 하나인 IoT(Internet Of Things)를 기반으로 항만 내 물류자원을 실시간으로 모니터링 및 추적하여 작업시간을 산정하는 기술이 연구되고 있지만 이를 실제 항만 현장에서 상용화하기에는 어려운 단계이다. 따라서, 본 연구에서는 컨테이너 터미널 운영 효율화를 위해 야드 트랙터 작업시간 예측 모형을 개발한다. 예측 모형의 개발을 위해 실제 항만 운영 데이터를 분석하여 야드 트랙터의 작업에 영향을 끼치는 요인을 분석하고, 이에 따른 야드 트랙터의 작업시간을 예측한다.

  • PDF

BERTopic 모델을 이용한 항공사 서비스에서 지각된 고객가치가 고객 만족도에 미치는 영향 분석 (The Effect of Perceived Customer Value on Customer Satisfaction with Airline Services Using the BERTopic Model)

  • 정의주;이병현;이청용;김재경
    • 지식경영연구
    • /
    • 제24권3호
    • /
    • pp.95-125
    • /
    • 2023
  • 항공산업의 급격한 성장으로 인해 많은 항공사가 생기면서 고객들이 항공사를 선택할 때 고려하는 요소가 늘어나고 있다. 이에 따라 항공사는 고품질의 서비스와 차별화된 경험적 가치를 제공하여 고객가치를 높이고 있다. 초기 고객가치 연구는 제품 및 서비스에 대한 효용성의 관점에서 비용과 편익 간의 상충관계로 간주하고 실용적 가치 중심으로 이루어졌지만, 최근에는 경험적 측면의 가치의 중요성이 주목받았다. 그러나 경험적 측면의 가치는 제품이나 서비스 상황에 따라 고객가치를 구성하는 요소가 변화되기 때문에 제품이나 서비스에 대한 고객의 선호도를 충분히 나타내는 특정 맥락에서 조사해야 한다. 또한, 고객가치는 고객이 의사결정을 내릴 때 큰 영향을 미치므로 항공사는 고객가치를 구성하는 요소를 정확하게 이해하는 것이 필요하다. 따라서 본 연구에서는 항공 전문 웹사이트인 스카이트랙스(Skytrax)에서 고객이 작성한 리뷰와 평점을 수집하고 BERTopic 모델을 활용하여 고객가치에 대한 요소를 도출하였다. 분석 결과, 항공사에서 고객가치를 구성하는 9가지 요소를 파악하였으며 이 중 6가지 요소가 고객 만족도와 영향을 미침을 확인하였다. 이를 통해 본 연구는 고객가치의 세분화된 파악을 가능하게 하는 새로운 방법론을 제안하고, 항공사에 구체적인 서비스 품질 향상을 위한 방향을 제시한다는 의의와 시사점을 가진다.

위상 잠금 열화상 기법을 이용한 콘크리트 마감재 내부 균열 검출 (Concrete Crack Detection Inside Finishing Materials Using Lock-in Thermography)

  • 이명훈;우욱용;최하진;김종찬
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제27권6호
    • /
    • pp.30-38
    • /
    • 2023
  • 안전점검 대상 노후 건축물이 증가함에 따라 안전관리 주체인 지정기관 및 관리주체의 부담이 증가하고 있다. 이에 안전점검 대상 건축물 선정에 있어 적절한 안전전검 기준과 그에 따르는 적절한 기술은 필수적이다. 현행 노후 건축물 대상 안전점검 수행 기준은 마감재로 인해 구조 부재 균열 등의 손상 확인이 어려울 경우 낮은 점수를 부여하고 있다. 이는 구조물의 실체 안전상태와 관계없이 평가 결과가 과소평가되어 안전점검 대상 노후화 건축물을 증가시키는 원인이다. 이에 본 연구에서는 마감재 내부의 균열 탐지를 위해 비파괴·비접촉 검사인 열화상 기법을 제안하였다. 열화상 카메라를 이용한 마감재 내부 균열 관측을 위해 콘크리트 시편을 제작하였으며, 콘크리트 표면 및 균열부에 열원을 가진하여 열화상 데이터를 계측하였다. 계측 결과, 너비 0.3mm, 0.5mm, 0.7mm의 마감재 내부 균열 관측이 가능함을 확인하였으나, 표면 박리, 도배지 들뜸으로 인한 불균일한 온도 분포로 인해 균열 판단이 어렵다. 이에 열화상 데이터의 진폭 및 위상 차이를 도출하여 데이터 분석을 수행한 결과, 0.5mm, 0.7mm 균열에 대해 선명한 균열 계측이 가능하였다. 본 연구를 토대로 추후 마감재 내부 균열 손상 진단에 있어 빅 데이터 기반 딥러닝을 이용한 기술개발을 통해 현장적용 및 분석의 효율성을 증대시키고자 한다.

변동성 돌파 전략을 사용한 S&P 500 지수의 자동 거래와 매수 및 보유 비교 연구 (Comparative Study of Automatic Trading and Buy-and-Hold in the S&P 500 Index Using a Volatility Breakout Strategy)

  • 홍성혁
    • 사물인터넷융복합논문지
    • /
    • 제9권6호
    • /
    • pp.57-62
    • /
    • 2023
  • 본 연구는 미국 S&P 500 지수를 변동성 돌파 전략을 활용하여 Buy and Hold 방식과 비교 분석한 연구이다. 변동성 돌파 전략은 시장의 상대적 안정 또는 집중된 시기 후의 가격 움직임을 활용하는 거래 전략이다. 특히, 낮은 변동성 기간 후에 큰 가격 움직임이 더 자주 발생한다는 것이 관찰된다. 주식이 한동안 좁은 가격 범위에서 움직이다가 가격이 갑작스레 상승 또는 하락하는 경우, 그 주식이 해당 방향으로 계속 움직일 것으로 예상된다. 이러한 움직임을 활용하기 위해 거래자들은 변동성 돌파 전략을 채택한다. 'k' 값은 최근 시장 변동성의 측정값에 곱하는 배수로서 활용된다. 변동성의 측정 방법 중 하나로는 최근 거래일의 최고가와 최저가 차이를 나타내는 평균 진정 범위(ATR)가 있다. 'k' 값은 거래자들이 거래 임계값을 설정하는 데 중요한 역할을 한다. 본 연구는 'k' 값을 일반적인 값으로 연산하여 Buy and Hold 전략과 수익률을 비교 하여, 변동성 돌파전략을 사용한 알고리즘 트레이딩이 약간은 높은 수익률을 이룩하였다. 추후에는 인공 지능 딥러닝 기법을 이용하여 S&P 500 지수의 자동 거래를 위한 최적의 K 값을 구하고, 이를 통해 수익률을 극대화하기 위한 시뮬레이션 결과를 제시할 예정이다.

다종 위성영상을 활용한 재난대응 방안 연구 (Study on Disaster Response Strategies Using Multi-Sensors Satellite Imagery)

  • 박종수;이달근;이준우;천은지;정하규
    • 대한원격탐사학회지
    • /
    • 제39권5_2호
    • /
    • pp.755-770
    • /
    • 2023
  • 최근 심각한 기후변화, 기상이상 현상 등으로 인해 자연재난의 발생빈도 및 규모가 증가하고 있다. 대형화 재난 발생 시 시간·경제적 제약으로 인해 인공위성, 드론 등 원격탐사 기반의 재난관리의 필요성이 대두되고 있다. 본 연구에서는 재난 발생 시 활용가능한 국내·외 위성들과 최근 우주산업 활성화에 따라 운용 중 및 개발 중인 차세대중형위성, 초소형위성의 현황과 대량의 위성영상들의 활용 기술 동향에 대해 정리하였다. 분석 기술로는 딥러닝의 근간인 인공지능 기술을 접목한 연구들이 있으며, 사용자 중심의 분석 준비 데이터(analysis ready data)를 활용할 수 있는 주요 플랫폼을 소개하였다. 또한 최근 발생된 대형재난인 홍수, 산사태, 가뭄, 산불을 중심으로 위성영상을 활용하여 피해분석을 함으로써 재난관리에 어떻게 활용될 수 있는지에 대해 확인하였다. 마지막으로 개발될 위성을 고려하여 재난 관리 단계별 활용방안에 대해 제시하였다. 본 연구를 통해 위성개발 및 운영현황, 최신 위성영상 분석기술 동향과 다종 위성영상을 활용한 재난대응 방안에 대해 제시되었다. 재난 진행단계에서는 예방과 대비 보다는 대응과 복구에 대한 위성영상의 활용도가 높은 것을 확인할 수 있었다. 향후 다종의 영상이 수급되었을 때 효과적인 재난관리를 위해 인공지능, 딥러닝 등 최신기술 융합 방안과 적용 가능성에 대한 연구를 수행할 예정이다.

LSTM을 활용한 고속도로 교통정보 예측 모델 개발 방법론 (Methodology for Developing a Predictive Model for Highway Traffic Information Using LSTM)

  • 이요셉;진형석;김예진;박성호;윤일수
    • 한국ITS학회 논문지
    • /
    • 제22권5호
    • /
    • pp.1-18
    • /
    • 2023
  • 최근 빅데이터 및 딥러닝 기술의 발전으로 다양한 교통정보가 널리 수집 및 활용되고 있다. 특히 시계열 특성을 갖는 교통정보 예측 분야에서는 장단기 메모리(long short term memory, LSTM)가 널리 사용되고 있다. LSTM에 입력되는 시계열 데이터의 추세, 계절성, 주기 등이 상이하기 때문에 시계열 데이터를 기반으로 한 예측 모델에서도 데이터의 특성에 따라 하이퍼 파라미터의 적합한 값을 찾는 시행착오법이 필수적이다. 이에 적합한 하이퍼 파라미터를 찾는 방법론이 정립된다면, 정확도가 높은 모델 구성에 소요되는 시간을 줄일 수 있다. 따라서, 본 연구에서는 국내 고속도로 차량검지기 데이터와 LSTM을 기반으로 교통정보 예측 모델을 개발하였으며, LSTM의 하이퍼 파라미터별 평가지표 변화를 통해 예측 결과에 미치는 영향평가를 수행하였다. 또한, 이를 기반으로 교통분야에서 고속도로 교통정보 예측에 적합한 하이퍼 파라미터를 찾는 방법론을 제시하였다.