• Title/Summary/Keyword: Deep tissue

Search Result 407, Processing Time 0.037 seconds

The Deep Dry Needling Techniques, and Interventional Muscle & Nerve Stimulation (IMS) for the Treatment of Chronic Pain (만성통증 치료에서 Deep Dry Needling의 모델들과 중재적 근육 및 신경자극 요법)

  • Lee, Young Jin;Ahn, Kang;Lee, Sang Chul
    • The Korean Journal of Pain
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • Chronic pain can cause disability, mild to severe suffering and high medical costs. Some unfortunate patient do not improve despite administering conservative treatment and then the various interventional therapies, including oriental medical treatment and/or surgery, and they find themselves in search of a more effective pain relief. Deep dry needling is one of the newer treatment modalities for these patients. The last 10 years have seen a lot of progress in understanding the neural pathways and the type and extent of tissue involvement during chronic pain. This in turn has stimulated the development of new treatment techniques, and deep dry needling is one of them. So, the authors of this paper discuss the individual theories, the characteristics and future directions of several deep dry needling techniques, and we examine the new dry needling technique that has been recently developed in Korea.

Consideration of Vertical Position for predictable posterior implant - Deep implantation for Implant Biologic width (예지성 있는 구치부 임플란트를 위한 임플란트의 수직적 깊이에 대한 고려 Implant Biologic width를 위한 Deep Implantation)

  • Yun, Woo-Hyuk
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.28 no.1
    • /
    • pp.27-41
    • /
    • 2019
  • For predictable posterior implants, appropriate soft tissue thickness, called the biologic width, is required around the implant for crestal bone stability. In order to do so, it seems that there are many cases where the implant should be positioned deeper than the depth that we previously thought was appropriate or inevitable limit. I would like to share my clinical experience about the vertical position of the posterior implant with the case reports and the related surgical technique.

Revisiting radial forearm free flap for successful venous drainage

  • Cha, Yong Hoon;Nam, Woong;Cha, In-Ho;Kim, Hyung Jun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.39
    • /
    • pp.14.1-14.4
    • /
    • 2017
  • Tissue defect reconstruction using radial forearm free flap (RFFF) is a common surgical technique whose success or failure is mainly dependent on venous drainage. RFFF has two major venous outflow systems, superficial and deep vein. Drainage methods include combining both systems or using one alone. This review aims to recapitulate the vascular anatomy and network of RFFF as well as shed light on deep vein as a reliable venous drainage system. We also discuss basic evidence for and advantages of single microanastomosis with coalesced vein to overcome technical difficulties associated with the deep vein system.

Guided tissue regeneration using resorbable membrane with or without xenograft in osseous defect (골결손부에서 흡수성 차폐막 단독 또는 이종골을 동반하여 시행한 조직유도재생술)

  • Lee, Won-Jin;Kim, Won-Gi;Ahn, Yong-Bum;Chang, Moon-Taek;Kim, Hyung-Seop
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.4
    • /
    • pp.737-744
    • /
    • 2008
  • Purpose: In advanced case of periodontitis, surgical treatment without bone contouring may result in residual pockets inaccessible to proper cleaning during post-treatment maintenance. This problem can be avoided or reduced by applying guided tissue regeneration. Materials and Methods: All of 3 patients had deep periodontal pocket depth and bleeding on probing, and radiograph revealed osseous defect, so we planned guided tissue regeneration using resorbable membrane with or without xenograft. Result: 6 months later, periodontal pocket depth and bleeding on probing was improved and gingiva was stable. Conclusion: Guided tissue regeneration using resorbable membrane with or without xenograft in osseous defect is predictable.

A novel technique for large and ptotic breast reconstruction using a latissimus dorsi myocutaneous flap set at the posterior aspect, combined with a silicone implant, following tissue expander surgery

  • Ishii, Naohiro;Ando, Jiro;Shimizu, Yusuke;Kishi, Kazuo
    • Archives of Plastic Surgery
    • /
    • v.45 no.5
    • /
    • pp.484-489
    • /
    • 2018
  • Large and ptotic breast reconstruction in patients who are not candidates for a transverse rectus abdominalis myocutaneous flap and revision surgery for the contralateral breast remains challenging. We developed a novel breast reconstruction technique using a latissimus dorsi myocutaneous (LD m-c) flap set at the posterior aspect of the reconstructed breast, combined with an anatomical silicone breast implant (SBI), following tissue expander surgery. We performed the proposed technique in four patients, in whom the weight of the resected tissue during mastectomy was >500 g and the depth of the inframammary fold (IMF) was >3 cm. After over-expansion of the lower portion of the skin envelope by a tissue expander, the LD m-c flap was transferred to cover the lower portion of the breast defect and to achieve a ptotic contour, with the skin paddle set at the posterior aspect of the reconstructed breast. An SBI was then placed in the rest of the breast defect after setting the LD m-c flap. No major complications were observed during the follow-up period. The proposed technique resulted in symmetrical and aesthetically satisfactory breasts with deep IMFs, which allowed proper fitting of the brassiere, following large and ptotic breast reconstruction.

An Algorithmic Approach to Total Breast Reconstruction with Free Tissue Transfer

  • Yu, Seong Cheol;Kleiber, Grant M.;Song, David H.
    • Archives of Plastic Surgery
    • /
    • v.40 no.3
    • /
    • pp.173-180
    • /
    • 2013
  • As microvascular techniques continue to improve, perforator flap free tissue transfer is now the gold standard for autologous breast reconstruction. Various options are available for breast reconstruction with autologous tissue. These include the free transverse rectus abdominis myocutaneous (TRAM) flap, deep inferior epigastric perforator flap, superficial inferior epigastric artery flap, superior gluteal artery perforator flap, and transverse/vertical upper gracilis flap. In addition, pedicled flaps can be very successful in the right hands and the right patient, such as the pedicled TRAM flap, latissimus dorsi flap, and thoracodorsal artery perforator. Each flap comes with its own advantages and disadvantages related to tissue properties and donor-site morbidity. Currently, the problem is how to determine the most appropriate flap for a particular patient among those potential candidates. Based on a thorough review of the literature and accumulated experiences in the author's institution, this article provides a logical approach to autologous breast reconstruction. The algorithms presented here can be helpful to customize breast reconstruction to individual patient needs.

Electrophoretic Tissue Clearing and Labeling Methods for Volume Imaging of Whole Organs

  • Kim, Dai Hyun;Ahn, Hyo Hyun;Sun, Woong;Rhyu, Im Joo
    • Applied Microscopy
    • /
    • v.46 no.3
    • /
    • pp.134-139
    • /
    • 2016
  • Detailed structural and molecular imaging of intact organs has incurred academic interest because the associated technique is expected to provide innovative information for biological investigation and pathological diagnosis. The conventional methods for volume imaging include reconstruction of images obtained from serially sectioned tissues. This approach requires intense manual work which involves inevitable uncertainty and much time to assemble the whole image of a target organ. Recently, effective tissue clearing techniques including CLARITY and ACT-PRESTO have been reported that enables visualization of molecularly labeled structures within intact organs in three dimensions. The central principle of the methods is transformation of intact tissue into an optically transpicuous and macromolecule permeable state without loss of intrinsic structural integrity. The rapidly evolving protocols enable morphological analysis and molecular labeling of normal and pathological characteristics in large assembled biological systems with single-cell resolution. The deep tissue volume imaging will provide fundamental information about mutual interaction among adjacent structures such as connectivity of neural circuits; meso-connectome and clinically significant structural alterations according to pathologic mechanisms or treatment procedures.

Clinical Application of Fat Tissue Wraparound Splint after Facial Nerve Repair (안면신경 봉합 후 지방조직으로 둘러싼 부목의 임상적 적용)

  • Lee, Yong Jig;Ha, Won Ho
    • Archives of Craniofacial Surgery
    • /
    • v.14 no.1
    • /
    • pp.46-49
    • /
    • 2013
  • Facial deformity after nerve injury changes ones' social life. We experienced a few patients with healthy early recovery of muscle contraction after the operation with soft tissue wraparound splint. Under general anesthesia, exploration to find as many injured nerve stumps with ${\times}2.5$ loopes was undertaken at first. Interfascicular repair was done with minimal tension by 10-0 nylon under a microscope, and the suture site was sealed by approximating the surrounding fat flaps. This conjoined adipose tissue flap was a splint as a wraparound environment to reduce the tension in the coaptation site, and to increase the relative concentration of releasing neurotrophic factors by surrounding it. A 45-year-old man fell down in a drunken state and had deep laceration by broken flowerpot fragments with facial muscle weakness on the right cheek. His injured mandibular branches of the facial nerve were found. A 31-year-old female suffered from motionlessnesss of frontalis muscle after a traffic accident. She had four frontal branches injured. The man had his cheek with motion after seven days, and the woman two months after the operation. The nerve conduction test of the woman showed normalized values. Facial nerve repair surrounded by adipose tissue wraparound splint can make the recovery time relatively short.

Real-time Voltammetric Assay of Cadmium Ions in Plant Tissue and Fish Brain Core

  • Ly, Suw-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1613-1617
    • /
    • 2006
  • Optimum analytical conditions for cyclic voltammetry (CV) and square wave (SW) stripping voltammetry were determined using mercury-mixed carbon nanotube paste electrode (PE). The results approached the microgram working ranges of SW: 10.0-80.0 $ugL^{-1}$ and CV: 100-700 $ugL^{-1}$ Cd (II); working conditions of 300-Hz frequency, 100 mV amplitude, 1.6 V accumulation potential, 400 sec accumulation time, and 40 mV increment potential. First, analysis was performed through direct assay of cadmium ions deep into the fishs brain core and plant tissue in real time with a preconcentration time of 400 sec. The relative standard deviation of 10.0 $mgL^{-1}$ Cd (II) observed was 0.064 (n = 12) at optimum conditions. The low detection limit (S/N) was set at 0.6 $ugL^{-1}$ ($5.33{\times}10^{-9}$ M). The methods can be used in direct analysis in vivo or in real-time monitoring of plant tissue.

Breast Reconstruction with Microvascular MS-TRAM and DIEP Flaps

  • Chang, David W.
    • Archives of Plastic Surgery
    • /
    • v.39 no.1
    • /
    • pp.3-10
    • /
    • 2012
  • The free muscle-sparing transverse rectus abdominis myocutaneous (MS-TRAM) and deep inferior epigastric perforator (DIEP) flaps involve transferring skin and subcutaneous tissue from the lower abdominal area and have many features that make them well suited for breast reconstruction. The robust blood supply of the free flap reduces the risk of fat necrosis and also enables aggressive shaping of the flap for breast reconstruction to optimize the aesthetic outcome. In addition, the free MS-TRAM flap and DIEP flap require minimal donor-site sacrifice in most cases. With proper patient selection and safe surgical technique, the free MS-TRAM flap and DIEP flap can transfer the lower abdominal skin and subcutaneous tissue to provide an aesthetically pleasing breast reconstruction with minimal donor-site morbidity.