• 제목/요약/키워드: Deep neural network (DNN)

검색결과 268건 처리시간 0.021초

딥 뉴럴 네트워크를 이용한 새로운 리튬이온 배터리의 SOC 추정법 (A Novel SOC Estimation Method for Multiple Number of Lithium Batteries Using Deep Neural Network)

  • Khan, Asad;Ko, Young-hwi;Choi, Woojin
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2019년도 추계학술대회
    • /
    • pp.70-72
    • /
    • 2019
  • For the safe and reliable operation of Lithium-ion batteries in Electric Vehicles (EVs) or Energy Storage Systems (ESSs), it is essential to have accurate information of the battery such as State of Charge (SOC). Many kinds of different techniques to estimate the SOC of the batteries have been developed so far such as the Kalman Filter. However, when it is applied to the multiple number of batteries it is difficult to maintain the accuracy of the estimation over all cells due to the difference in parameter value of each cell. Moreover the difference in the parameter of each cell may become larger as the operation time accumulates due to aging. In this paper a novel Deep Neural Network (DNN) based SOC estimation method for multi cell application is proposed. In the proposed method DNN is implemented to learn non-linear relationship of the voltage and current of the lithium-ion battery at different SOCs and different temperatures. In the training the voltage and current data of the Lithium battery at charge and discharge cycles obtained at different temperatures are used. After the comprehensive training with the data obtained with a cell resulting estimation algorithm is applied to the other cells. The experimental results show that the Mean Absolute Error (MAE) of the estimation is 0.56% at 25℃, and 3.16% at 60℃ with the proposed SOC estimation algorithm.

  • PDF

Resonance frequency and stability of composite micro/nanoshell via deep neural network trained by adaptive momentum-based approach

  • Yan, Yunrui
    • Geomechanics and Engineering
    • /
    • 제28권5호
    • /
    • pp.477-491
    • /
    • 2022
  • In the present study, the effects of thermal loading on the buckling and resonance frequency of graphene platelets (GPL) reinforced nano-composites are examined. Functionally graded (FG) material properties are considered in thickness direction for the thermal responses of the composite. The equivalent material properties are obtained using Halphin-Tsai nano-mechanical model for composite layers. Moreover, the effects of nano-scale sizes are taken into account, employing functionally modified couple stress (FMCS) parameter. In this regard, for the first time, it is demonstrated that at certain values of GPL weight fraction, thermal buckling occurs. In obtaining results of vibrational behavior, both analytical solution and deep neural network (DNN) methods are used. The DNN method needs low computational costs to predict the resonance behavior. A comprehensive parametric study is conducted to indicate the effects of several geometrical, material, and loading conditions on the vibrational and buckling behavior of cylindrical shell structures made of GPL-nanocomposites. It is shown that the effect of temperature change on the occurrence of buckling is vital while it has a negligible impact on the resonance frequency of the structure. Moreover, the size-dependency of the results is demonstrated, and it cannot be neglected in nano-scales.

DNN을 활용한 건설현장 품질관리 시스템 개발을 위한 기초연구 (A Preliminary Study of the Development of DNN-Based Prediction Model for Quality Management)

  • 석장환;권우빈;이학주;이찬우;조훈희
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 가을 학술논문 발표대회
    • /
    • pp.223-224
    • /
    • 2022
  • The occurrence of defect, one of the major risk elements, gives rise to construction delays and additional costs. Although construction companies generally prefer to use a method of identifying and classifying the causes of defects, a system for predicting the rise of defects becomes important matter to reduce this harmful issue. However, the currently used methods are kinds of reactive systems that are focused on the defects which occurred already, and there are few studies on the occurrence of defects with prediction systems. This paper is about preliminary study on the development of judgemental algorithm that informs us whether additional works related to defect issue are needed or not. Among machine learning techniques, deep neural network was utilized as prediction model which is a major component of algorithm. It is the most suitable model to be applied to the algorithm when there are 8 hidden layers and the average number of nodes in each hidden layer is 70. Ultimately, the algorithm can identify and defects that may arise in later and contribute to minimize defect frequency.

  • PDF

Deep neural network based seafloor sediment mapping using bathymetric features of MBES multifrequency

  • Khomsin;Mukhtasor;Suntoyo;Danar Guruh Pratomo
    • Ocean Systems Engineering
    • /
    • 제14권2호
    • /
    • pp.101-114
    • /
    • 2024
  • Seafloor sediment mapping is an essential research topic in shallow coastal waters, especially in port development, benthic habitat mapping, and underwater communications. The seafloor sediments can be interpreted by collecting sediment samples directly in the field using a grab sampler or corer. Another method is optical, especially using underwater cameras and videos. Both methods each have weaknesses in terms of area coverage (mechanic) and accurate positioning (optic). The latest technology used to overcome it is the acoustic method (echosounder) with Global Navigation Satellite System (GNSS) Real Time Kinematic (RTK) positioning. Therefore, in this study will propose the classification of seafloor sediments in coastal waters using acoustic method that is Multibeam Echosounder (MBES) multi-frequency with five frequency (200 kHz, 250 kHz, 300 kHz, 350 kHz, and 400 kHz). In this study, the deep neural network (DNN) used the bathymetric multi frequency, bathymetric difference inters frequencies, and bathymetric features from 5 (five) frequencies as input layer and 4 (four) sediment types in 74 (seventy-four) sample sediment as output layer to make a seafloor sediment map. Results of sediment mapping using the DNN method show an overall accuracy of 71.6% (significant) and a kappa coefficient of 0.59 (moderate). The distribution of seafloor sediment in the study area is mainly silt (41.6%), followed by clayey sand (36.6%), sandy silt (14.2%), and silty sand (7.5%).

동아시아 광역 데이터를 활용한 DNN 기반의 서울지역 PM10 예보모델의 개발 (Development of PM10 Forecasting Model for Seoul Based on DNN Using East Asian Wide Area Data)

  • 유숙현
    • 한국멀티미디어학회논문지
    • /
    • 제22권11호
    • /
    • pp.1300-1312
    • /
    • 2019
  • BSTRACT In this paper, PM10 forecast model using DNN(Deep Neural Network) is developed for Seoul region. The previous Julian forecast model has been developed using weather and air quality data of Seoul region only. This model gives excellent results for accuracy and false alarm rates, but poor result for POD(Probability of Detection). To solve this problem, an WA(Wide Area) forecasting model that uses Chinese data is developed. The data is highly correlated with the emergence of high concentrations of PM10 in Korea. As a result, the WA model shows better accuracy, and POD improving of 3%(D+0), 21%(D+1), and 36%(D+2) for each forecast period compared with the Julian model.

Application of artificial intelligence for solving the engineering problems

  • Xiaofei Liu;Xiaoli Wang
    • Structural Engineering and Mechanics
    • /
    • 제85권1호
    • /
    • pp.15-27
    • /
    • 2023
  • Using artificial intelligence and internet of things methods in engineering and industrial problems has become a widespread method in recent years. The low computational costs and high accuracy without the need to engage human resources in comparison to engineering demands are the main advantages of artificial intelligence. In the present paper, a deep neural network (DNN) with a specific method of optimization is utilize to predict fundamental natural frequency of a cylindrical structure. To provide data for training the DNN, a detailed numerical analysis is presented with the aid of functionally modified couple stress theory (FMCS) and first-order shear deformation theory (FSDT). The governing equations obtained using Hamilton's principle, are further solved engaging generalized differential quadrature method. The results of the numerical solution are utilized to train and test the DNN model. The results are validated at the first step and a comprehensive parametric results are presented thereafter. The results show the high accuracy of the DNN results and effects of different geometrical, modeling and material parameters in the natural frequencies of the structure.

건축물 안전등급 산출을 위한 외관 조사 상태 평가 데이터 기반 DNN 모델 구축 (Development of a Building Safety Grade Calculation DNN Model based on Exterior Inspection Status Evaluation Data)

  • 이재민;김상용;김승호
    • 한국건축시공학회지
    • /
    • 제21권6호
    • /
    • pp.665-676
    • /
    • 2021
  • 노후 건축물의 수가 증가함에 따라, 건물의 안전진단, 유지 보수에 대한 중요성이 증가하고 있다. 기존 외관 조사는 점검자의 주관적인 판단이 수반되어 평가 결과가 다르고 객관성과 신뢰성이 떨어진다. 따라서 본 연구는 기존 연구를 통해 기실시된 외관 조사 및 상태 평가 프로세스의 한계를 제시하였으며, UAV, Laser Scanner를 통해 3D Point Cloud 데이터를 수집하였다. 또한, Reverse Engineering 기술을 이용하여 3D 모델을 생성한 후 객관적인 상태평가 데이터를 취득하였다. 이후 기존의 정밀검사 데이터와 정밀 안전진단 데이터를 활용하여 DNN 구조를 생성하고, 고정밀도 측정 장치를 이용하여 얻은 상태평가 데이터를 적용하여 객관적인 건물안전등급을 산출하였다. 자동화된 프로세스는 20개의 노후된 건축물에 적용되며 동일 면적 건축물 기준 수작업으로 실시되는 안전진단의 시간에 비해 약 50% 감소하였다. 이후 본 연구에서는 안전등급 결과값과 기존값을 비교하여 안전등급 산출과정의 정확성을 검증하고 약 90%의 높은 정확도를 가진 DNN을 구축하였다. 이는 향후 노후 건물의 안전등급 산정의 신뢰성이 향상되고 비용과 시간을 절약해 경제성이 향상될 것으로 기대된다.

Feature Selection with Ensemble Learning for Prostate Cancer Prediction from Gene Expression

  • Abass, Yusuf Aleshinloye;Adeshina, Steve A.
    • International Journal of Computer Science & Network Security
    • /
    • 제21권12spc호
    • /
    • pp.526-538
    • /
    • 2021
  • Machine and deep learning-based models are emerging techniques that are being used to address prediction problems in biomedical data analysis. DNA sequence prediction is a critical problem that has attracted a great deal of attention in the biomedical domain. Machine and deep learning-based models have been shown to provide more accurate results when compared to conventional regression-based models. The prediction of the gene sequence that leads to cancerous diseases, such as prostate cancer, is crucial. Identifying the most important features in a gene sequence is a challenging task. Extracting the components of the gene sequence that can provide an insight into the types of mutation in the gene is of great importance as it will lead to effective drug design and the promotion of the new concept of personalised medicine. In this work, we extracted the exons in the prostate gene sequences that were used in the experiment. We built a Deep Neural Network (DNN) and Bi-directional Long-Short Term Memory (Bi-LSTM) model using a k-mer encoding for the DNA sequence and one-hot encoding for the class label. The models were evaluated using different classification metrics. Our experimental results show that DNN model prediction offers a training accuracy of 99 percent and validation accuracy of 96 percent. The bi-LSTM model also has a training accuracy of 95 percent and validation accuracy of 91 percent.

LPC와 DNN을 결합한 유도전동기 고장진단 (Fault Diagnosis of Induction Motor using Linear Predictive Coding and Deep Neural Network)

  • 류진원;박민수;김남규;정의필;이정철
    • 한국멀티미디어학회논문지
    • /
    • 제20권11호
    • /
    • pp.1811-1819
    • /
    • 2017
  • As the induction motor is the core production equipment of the industry, it is necessary to construct a fault prediction and diagnosis system through continuous monitoring. Many researches have been conducted on motor fault diagnosis algorithm based on signal processing techniques using Fourier transform, neural networks, and fuzzy inference techniques. In this paper, we propose a fault diagnosis method of induction motor using LPC and DNN. To evaluate the performance of the proposed method, the fault diagnosis was carried out using the vibration data of the induction motor in steady state and simulated various fault conditions. Experimental results show that the learning time of our proposed method and the conventional spectrum+DNN method is 139 seconds and 974 seconds each executed on the experimental PC, and our method reduces execution time by 1/8 compared with conventional method. And the success rate of the proposed method is 98.08%, which is similar to 99.54% of the conventional method.

DNN-based LTE Signal Propagation Modelling for Positioning Fingerprint DB Generation

  • Kwon, Jae Uk;Cho, Seong Yun
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제10권1호
    • /
    • pp.55-66
    • /
    • 2021
  • In this paper, we propose a signal propagation modeling technique for generating a positioning fingerprint DB based on Long Term Evolution (LTE) signals. When a DB is created based on the location-based signal information collected in an urban area, gaps in the DB due to uncollected areas occur. The spatial interpolation method for filling the gaps has limitations. In addition, the existing gap filling technique through signal propagation modeling does not reflect the signal attenuation characteristics according to directions occurring in urban areas by considering only the signal attenuation characteristics according to distance. To solve this problem, this paper proposes a Deep Neural Network (DNN)-based signal propagation functionalization technique that considers distance and direction together. To verify the performance of this technique, an experiment was conducted in Seocho-gu, Seoul. Based on the acquired signals, signal propagation characteristics were modeled for each method, and Root Mean Squared Errors (RMSE) was calculated using the verification data to perform comparative analysis. As a result, it was shown that the proposed technique is improved by about 4.284 dBm compared to the existing signal propagation model. Through this, it can be confirmed that the DNN-based signal propagation model proposed in this paper is excellent in performance, and it is expected that the positioning performance will be improved based on the fingerprint DB generated through it.