• Title/Summary/Keyword: Deep mined repository

Search Result 3, Processing Time 0.018 seconds

A Discussion on the Deep Horizontal Drillhole Disposal Concept of Spent Nuclear Fuel in Korea (사용후핵연료의 심부수평시추공처분 개념에 관한 소고)

  • Kim, Kyungsu;Ji, Sung-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.3
    • /
    • pp.355-362
    • /
    • 2019
  • This technical note introduces a newly-proposed concept of deep horizontal drillhole disposal of spent nuclear fuel, and considers how it can be applied in the Korean environment. This disposal concept, in which high-level radioactive waste is disposed in deep horizontal drillholes installed with directional drilling technique, is expected to have great advantages over the existing deep mined repository concept in economics and safety. Since this concept is still at the idea level, however, it is necessary for worldwide expert groups to demonstrate its safety and performance. In addition, the development of guidelines by the regulatory body should be supported. The Korean circumstances, which include a narrow territory and a high population density, as well as the amount of spent nuclear fuel, make the NIMBY (Not In My Back Yard) phenomenon very strong and the siting conditions difficult. Under these conditions, if the disposal section of deep horizontal drillhole concept can be located at the continental shelf, with a stable environment, rather than in a coastal land area, it is expected to alleviate the psychological anxiety of the local community and stakeholders. Moreover, even when constructing a centralized deep mined repository in the future, it is necessary to consider locating the repository in the continental shelf.

Current Status of Nuclear Waste Management (and Disposal) in the United States

  • McMahon, K.;Swift, P.;Nutt, M.;Birkholzer, J.;Boyle, W.;Gunter, T.;Larson, N.;MacKinnon, R.;Sorenson, K.
    • Journal of Nuclear Fuel Cycle and Waste Technology
    • /
    • v.1 no.1
    • /
    • pp.29-35
    • /
    • 2013
  • The United States Department of Energy (US DOE) is conducting research and development (R&D) activities under the Used Fuel Disposition Campaign (UFDC) to support storage, transportation, and disposal of used nuclear fuel (UNF) and wastes generated by existing and future nuclear fuel cycles. R&D activities are ongoing at nine national laboratories, and are divided into storage, transportation and disposal. Storage R&D focuses on closing technical gaps related to extended storage of UNF. Transportation R&D focuses on ensuring transportability of UNF following extended storage, and addressing data gaps regarding nuclear fuel integrity, retrievability, and demonstration of subcriticality. Disposal R&D focuses on identifying geologic disposal options and addressing technical challenges for generic disposal concepts in mined repositories in salt, clay/shale, and granitic rocks, and deep borehole disposal. UFDC R&D goals include increasing confidence in the robustness of generic disposal concepts, reducing generic sources of uncertainty that may impact the viability of disposal concepts, and developing science and engineering tools to support the selection, characterization, and licensing of a repository. The US DOE has also initiated activities in the Nuclear Fuel Storage and Transportation (NFST) Planning Project to facilitate the development of an interim storage facility and to support transportation infrastructure in the near term.

A Brief Review on Uncertainty Analysis for the WIPP PA (EPA 규제에 대한 WIPP 사이트 성능평가의 불확실성 분석에 관한 검토)

  • 이연명;강철형;한경원
    • Tunnel and Underground Space
    • /
    • v.12 no.1
    • /
    • pp.52-69
    • /
    • 2002
  • The WIPP (Waste Isolation Pilot Plant), located 42km east of Carlsbad, New Mexico (NM), in bedded salt 655m below the surface, is a mined repository constructed by the US DOE for the permanent disposal of transuranic (TRU) wastes generated by activities related to defence of the US since 1970. Its historical disposal operation began in March 1999 following receipt of a final permit from the State of NM after a positive certification decision for the WIPP was issued by the EPA in 1998, as the first licensed facility in the US for the deep geologic disposal of radioactive wastes. The CCA (Compliance Certification Application) for the WIPP that the DOE submitted to the EPA in 1966 was supported by an extensive performance assessment (PA) carried out by Sandia National Laboratories (SNL), with so-called 1996 PA. Even though such PA methodologies could be greatly different from the way we consider for HLW disposal in Korea largely due to quite different geologic formations in which repository are likely to be located, a review on lots of works done through the WIPP PA studies could be the most important lessons that we can learn from in view of current situation in Korea where an initial phase of conceptual studies on HLW disposal has been just started. The objective of this art report is an overview of the methodology used in the recent WIPP PA to support the US DOE WIPP CCA and some relevant results completed by SNL.