본 연구는 잣나무와 낙엽송을 대상으로 라이다로부터 취득된 3차원의 Point cloud data (PCD)를 이용하여 딥러닝 기반의 수종 분류 모델을 구축하고 분류정확도를 비교·평가하였다. 수종 분류 모델은 라이다 플랫폼(고정식과 이동식), Farthest point sampling (FPS) 기반의 다운샘플링 강도(1024개, 2048개, 4096개, 8192개), 딥러닝 모델(PointNet, PointNet++) 3가지 조건에 따라 총 16개의 모델을 구축하였다. 분류 정확도 평가 결과, 고정식 라이다는 다운샘플링 강도가 8192개인 PCD 자료에 PointNet++ 모델을 적용하였을 때 카파계수가 93.7%로 가장 높았으며, 이동식 라이다는 다운샘플링 강도가 2048개에 PointNet++을 적용하였을 때 카파계수가 96.9%로 가장 높았다. 또한, 플랫폼과 다운샘플링 강도가 동일한 경우 PointNet++이 PointNet보다 정확도가 높았다. 구축된 16개 모델의 오분류 사례는 첫 번째, 수종 간의 구조적인 특징이 유사한 개체목 두 번째, 경사지 또는 임도 주변에 위치하여 편심생장한 개체목 세 번째, 개체목 분할 시 수관부가 수직으로 분할된 개체목에 대해 발생하였다.
본 연구는 건축시 발생되는 폐기물의 자동분류를 위해 딥러닝 알고리즘을 활용해 건출 폐기물 데이터를 각각 목재 폐기물, 플라스틱 폐기물, 콘크리트 폐기물로 분류하는 두 모델들을 통해서 성능 비교를 한다. 건축 폐기물의 분류를 위해 사용된 딥러닝 알고리즘은 합성곱 신경망 이미지 분류 알고리즘 VGG-16과 NLP를 기반으로 이미지를 시퀀스화 시킨ViT, Vision Transformer 모델을 사용했다. 건축 폐기물 데이터 수집을 위해 이미지 데이터를 전 세계 검색엔진에서 크롤링 하였고, 육안으로도 명확히 구분하기 어렵거나, 중복되는 등 실험에 방해되는 이미지는 전부 제외하여 각 분류당 1천장씩 총 3천장의 이미지를 확보했다. 또한, 데이터 학습시에 모델의 정확도 향상에 도움을 주기 위해 데이터 확대 작업을 진행해 총 3만장의 이미지로 실험을 진행 하였다. 수집된 이미 데이터가 정형화 되어있지 않은 데이터 임에도 불구하고 실험 결과는 정확도가 VGG-16는 91.5%, ViT 는 92.7%의 결과가 나타났다. 이는 실제 건축폐기물 데이터 관리 작업에 실전 활용 가능성을 제시한 것으로 보인다. 본 연구를 바탕으로 추후에 객체 탐지 기법이나 의미론적 분할 기법까지 활용한다면, 하나의 이미지 안에서도 여러 세밀한 분류가 가능해 더욱 완벽한 분류가 가능할 것이다.
Objective: T1 mapping provides valuable information regarding cardiomyopathies. Manual drawing is time consuming and prone to subjective errors. Therefore, this study aimed to test a DL algorithm for the automated measurement of native T1 and extracellular volume (ECV) fractions in cardiac magnetic resonance (CMR) imaging with a temporally separated dataset. Materials and Methods: CMR images obtained for 95 participants (mean age ± standard deviation, 54.5 ± 15.2 years), including 36 left ventricular hypertrophy (12 hypertrophic cardiomyopathy, 12 Fabry disease, and 12 amyloidosis), 32 dilated cardiomyopathy, and 27 healthy volunteers, were included. A commercial deep learning (DL) algorithm based on 2D U-net (Myomics-T1 software, version 1.0.0) was used for the automated analysis of T1 maps. Four radiologists, as study readers, performed manual analysis. The reference standard was the consensus result of the manual analysis by two additional expert readers. The segmentation performance of the DL algorithm and the correlation and agreement between the automated measurement and the reference standard were assessed. Interobserver agreement among the four radiologists was analyzed. Results: DL successfully segmented the myocardium in 99.3% of slices in the native T1 map and 89.8% of slices in the post-T1 map with Dice similarity coefficients of 0.86 ± 0.05 and 0.74 ± 0.17, respectively. Native T1 and ECV showed strong correlation and agreement between DL and the reference: for T1, r = 0.967 (95% confidence interval [CI], 0.951-0.978) and bias of 9.5 msec (95% limits of agreement [LOA], -23.6-42.6 msec); for ECV, r = 0.987 (95% CI, 0.980-0.991) and bias of 0.7% (95% LOA, -2.8%-4.2%) on per-subject basis. Agreements between DL and each of the four radiologists were excellent (intraclass correlation coefficient [ICC] of 0.98-0.99 for both native T1 and ECV), comparable to the pairwise agreement between the radiologists (ICC of 0.97-1.00 and 0.99-1.00 for native T1 and ECV, respectively). Conclusion: The DL algorithm allowed automated T1 and ECV measurements comparable to those of radiologists.
지구온난화로 인해 촉발된 기후변화가 홍수와 같은 수재해의 빈도와 규모를 증가시키며 국내 또한 장마와 집중호우로 인한 수재해가 증가하는 추세를 보인다. 이에 광범위한 수재해에 대해 효과적인 대응 및 기후 변화에 따른 선제적 대처가 필수적이며 이는 위성레이더 영상을 통해 가능하다. 본 연구에서는 Sentinel-1 위성 레이더 영상으로부터 국내 수체의 특성을 반영하기 위해 한강권역과 낙동강 권역의 일부 수체 영역에 대해 수체 학습 데이터셋 1,423장을 구축하였다. 정밀한 데이터 어노테이션(Annotation)을 위해 다양한 상황에 따른 구축 기준 문서를 작성한 뒤 진행하였다. 구축이 완료된 데이터셋을 딥러닝 모델 중 U-Net에 적용하여 수체 탐지 결과를 분석하였다. 최종적으로 학습된 모델을 학습과에 활용되지 않은 수체 영역에 적용하여 결과를 분석함으로써 전 국토 수체 모니터링의 가능성을 확인하였다. 분석 결과 구축된 수체 영역의 대해서는 F1-Score 0.987, Intersection over Union (IoU) 0.955의 높은 정확도로 수체를 탐지할 수 있었으며, 학습 및 평가에 활용되지 않은 다른 국내 수체 영역에 대해서도 동일하게 F1-Score 0.941, IoU 0.89의 높은 수체 탐지 결과를 나타냈다. 두 결과 모두 전반적으로 일부 그림자 영역과 폭이 좁은 하천에서 오류가 관찰되었으나, 그 외에는 정밀하게 수체를 탐지하였다. 이러한 연구 결과는 수재해 피해 규모 및 수자원 변화 모니터링에 중요한 기여를 할 것으로 기대된다. 추후 연구에서는 보다 다양한 수체 특성을 가진 데이터셋을 추가 구축한다면 오분류한 영역을 개선할 수 있을 것으로 기대되며, 전 국토의 수체를 효율적으로 관리 및 모니터링하는데 활용될 것으로 사료된다.
최근 비전분야에 소개된 Mask R-CNN은 객체 인스턴스 세분화를위한 개념적으로 간단하고 유연하며 일반적인 프레임 워크를 제시한다. 이 논문에서는 열적외선 카메라로부터 획득한 열감지영상에서 발열체인 인스턴스에 대해 발열부위의 세그멘테이션 마스크를 생성하는 동시에 이미지 내의 오브젝트 발열부분을 효율적으로 탐색하는 알고리즘을 제안한다. Mask R-CNN 기법은 바운딩 박스 인식을 위해 기존 브랜치와 병렬로 객체 마스크를 예측하기 위한 브랜치를 추가함으로써 Faster R-CNN을 확장한 알고리즘이다. Mask R-CNN은 훈련이 간단하고 빠르게 실행하는 고속 R-CNN에 추가된다. 더욱이, Mask R-CNN은 다른 작업으로 일반화하기 용이하다. 본 연구에서는 이 R-CNN기반 적외선 영상 검출알고리즘을 제안하여 RGB영상에서 구별할 수 없는 발열체를 탐지하였다. 실험결과 Mask R-CNN에서 변별하지 못하는 발열객체를 성공적으로 검출하였다.
건설업은 업무상 재해 발생빈도와 사망자 수가 다른 산업군에 비해 높아 가장 위험한 산업군으로 불린다. 정부는 건설 현장에서 발생하는 산업 재해를 줄이고 예방하기 위해 CCTV 설치 의무화를 발표했다. 건설 현장의 안전 관리자는 CCTV 관제를 통해 현장의 잠재된 위험성을 찾아 제거하고 재해를 예방한다. 하지만 장시간 관제 업무는 피로도가 매우 높아 중요한 상황을 놓치는 경우가 많다. 따라서 본 연구는 딥러닝 기반 컴퓨터 비전 모형 중 개체 분할인 YOLACT와 다중 객체 추적 기법인 SORT을 적용하여 다중 클래스 다중 객체 추적 시스템을 개발하였다. 건설 현장에서 촬영한 영상으로 제안한 방법론의 성능을 MS COCO와 MOT 평가지표로 평가하였다. SORT는 YOLACT의 의존성이 높아서 작은 객체가 적은 데이터셋을 학습한 모형의 성능으로 먼 거리의 물체를 추적하는 성능이 떨어지지만, 크기가 큰 객체에서 뛰어난 성능을 나타냈다. 본 연구로 인해 딥러닝 기반 컴퓨터 비전 기법들의 안전 관제 업무에 보조 역할로 업무상 재해를 예방할 수 있을 것으로 판단된다.
본 논문에서 마네킨에 착용된 의상 이미지를 분할하고 사용자의 사진에 입히는 가상의상착용 (VTON) 기술을 개발하였다. 의상과 모델의 3차원 정보가 필요하지 않는 2차원 이미지 기반 가상착용연구는 실용적인 가치가 크지만, 연구결과 현재 기술로는 의상 분할 시 가림이나 왜곡에 의한 문제 등 제약사항이 존재한다. 본 연구는 마네킨 의상을 사용함으로써 이러한 어려움을 줄였다는 가정 하에서, 딥러닝 기반 영역분할과 자세추정을 통하여 얻은 결과를 사용자 사진에 입히는 알고리즘을 제안하였다. 기존의 연구 대비 성능 개선을 위하여 사전 자세정보의 신뢰성 검사, 외곽선을 이용한 변형개선, 분할 영역개선 등을 사용하였다. 결과로 시각적으로 만족할 만한 의상착용의 경우가 전체의 50%이상으로 상당히 개선된 결과를 얻었다.
딥러닝 기반 자율 주행 기술이 발전함에 따라 다양한 목적의 인공지능 모델이 연구되었다. 연구된 여러 모델들을 동시에 구동하여 자율주행 시스템을 개발한다. 그러나 동시에 인공지능 모델을 사용하면서 많은 하드웨어 자원 소비가 증가한다. 이를 해결하기 위해 본 논문은 백본 모델을 공유하며 다중 태스크를 고속으로 수행할 수 있는 Multi-Task CNN 모델을 제안한다. 이를 통해 AI모델을 사용하기 위한 백본 수의 증가를 해결할 수 있었습니다. 제안하는 CNN 모델은 기존 모델 대비 50% 이상 웨이트 파라미터 수를 감소시키며, 3배 이상의 FPS 속도를 향상시켰다. 또한, 차선인식은 Instance segmentation 기반으로 차선검출 및 차선별 Labeling을 모두 출력한다. 그러나 기존 모델에 비해 정확도가 감소하는 부분에 대해서는 추가적인 연구가 필요하다.
건물 정보는 다양한 도시 공간 분석에 활용되는 필수 정보 중 하나이기에 지속적인 모니터링이 필요하지만 현실적으로 어려움이 존재하고 있다. 이를 위해 광범위한 지역에 대해서도 지속적인 관찰이 가능한 위성영상으로부터 건물을 추출하기 위한 연구가 진행되고 있으며, 최근에는 딥러닝 기반의 시맨틱 세그멘테이션 기법들이 활용되고 있다. 본 연구에서는 SpaceNet의 건물 v2 무료 오픈 데이터를 이용하여 30 cm 급 Worldview-3 RGB 영상으로부터 건물을 자동으로 추출하기 위해, context-based ResU-Net의 일부 구조를 변경하여 학습을 진행하였다. 분류 정확도 평가 결과, f1-score가 2회차 SpaceNet 대회 수상작의 분류 정확도보다 높은 것으로 나타났다. 앞으로 지속적으로 Worldview-3 위성 영상을 확보할 수 있다면 본 연구의 성과를 활용하여 전세계 건물 자동 추출 모델을 제작하는 것도 가능할 것으로 판단된다.
Ayed Ahmad Hamdan Al-Radaideh;Mohd Shafry bin Mohd Rahim;Wad Ghaban;Majdi Bsoul;Shahid Kamal;Naveed Abbas
KSII Transactions on Internet and Information Systems (TIIS)
/
제17권7호
/
pp.1807-1822
/
2023
Innovation and rapid increased functionality in user friendly smartphones has encouraged shutterbugs to have picturesque image macros while in work environment or during travel. Formal signboards are placed with marketing objectives and are enriched with text for attracting people. Extracting and recognition of the text from natural images is an emerging research issue and needs consideration. When compared to conventional optical character recognition (OCR), the complex background, implicit noise, lighting, and orientation of these scenic text photos make this problem more difficult. Arabic language text scene extraction and recognition adds a number of complications and difficulties. The method described in this paper uses a two-phase methodology to extract Arabic text and word boundaries awareness from scenic images with varying text orientations. The first stage uses a convolution autoencoder, and the second uses Arabic Character Segmentation (ACS), which is followed by traditional two-layer neural networks for recognition. This study presents the way that how can an Arabic training and synthetic dataset be created for exemplify the superimposed text in different scene images. For this purpose a dataset of size 10K of cropped images has been created in the detection phase wherein Arabic text was found and 127k Arabic character dataset for the recognition phase. The phase-1 labels were generated from an Arabic corpus of quotes and sentences, which consists of 15kquotes and sentences. This study ensures that Arabic Word Awareness Region Detection (AWARD) approach with high flexibility in identifying complex Arabic text scene images, such as texts that are arbitrarily oriented, curved, or deformed, is used to detect these texts. Our research after experimentations shows that the system has a 91.8% word segmentation accuracy and a 94.2% character recognition accuracy. We believe in the future that the researchers will excel in the field of image processing while treating text images to improve or reduce noise by processing scene images in any language by enhancing the functionality of VGG-16 based model using Neural Networks.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.