• Title/Summary/Keyword: Deep learning recommendation

Search Result 124, Processing Time 0.025 seconds

Design and Implementation of AI Recommendation Platform for Commercial Services

  • Jong-Eon Lee
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.202-207
    • /
    • 2023
  • In this paper, we discuss the design and implementation of a recommendation platform actually built in the field. We survey deep learning-based recommendation models that are effective in reflecting individual user characteristics. The recently proposed RNN-based sequential recommendation models reflect individual user characteristics well. The recommendation platform we proposed has an architecture that can collect, store, and process big data from a company's commercial services. Our recommendation platform provides service providers with intuitive tools to evaluate and apply timely optimized recommendation models. In the model evaluation we performed, RNN-based sequential recommendation models showed high scores.

Course recommendation system using deep learning (딥러닝을 이용한 강좌 추천시스템)

  • Min-Ah Lim;Seung-Yeon Hwang;Dong-Jin Shin;Jae-Kon Oh;Jeong-Joon Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.3
    • /
    • pp.193-198
    • /
    • 2023
  • We study a learner-customized lecture recommendation project using deep learning. Recommendation systems can be easily found on the web and apps, and examples using this feature include recommending feature videos by clicking users and advertising items in areas of interest to users on SNS. In this study, the sentence similarity Word2Vec was mainly used to filter twice, and the course was recommended through the Surprise library. With this system, it provides users with the desired classification of course data conveniently and conveniently. Surprise Library is a Python scikit-learn-based library that is conveniently used in recommendation systems. By analyzing the data, the system is implemented at a high speed, and deeper learning is used to implement more precise results through course steps. When a user enters a keyword of interest, similarity between the keyword and the course title is executed, and similarity with the extracted video data and voice text is executed, and the highest ranking video data is recommended through the Surprise Library.

Digital Signage System Based on Intelligent Recommendation Model in Edge Environment: The Case of Unmanned Store

  • Lee, Kihoon;Moon, Nammee
    • Journal of Information Processing Systems
    • /
    • v.17 no.3
    • /
    • pp.599-614
    • /
    • 2021
  • This paper proposes a digital signage system based on an intelligent recommendation model. The proposed system consists of a server and an edge. The server manages the data, learns the advertisement recommendation model, and uses the trained advertisement recommendation model to determine the advertisements to be promoted in real time. The advertisement recommendation model provides predictions for various products and probabilities. The purchase index between the product and weather data was extracted and reflected using correlation analysis to improve the accuracy of predicting the probability of purchasing a product. First, the user information and product information are input to a deep neural network as a vector through an embedding process. With this information, the product candidate group generation model reduces the product candidates that can be purchased by a certain user. The advertisement recommendation model uses a wide and deep recommendation model to derive the recommendation list by predicting the probability of purchase for the selected products. Finally, the most suitable advertisements are selected using the predicted probability of purchase for all the users within the advertisement range. The proposed system does not communicate with the server. Therefore, it determines the advertisements using a model trained at the edge. It can also be applied to digital signage that requires immediate response from several users.

Improving the Product Recommendation System based-on Customer Interest for Online Shopping Using Deep Reinforcement Learning

  • Shahbazi, Zeinab;Byun, Yung-Cheol
    • Soft Computing and Machine Intelligence
    • /
    • v.1 no.1
    • /
    • pp.31-35
    • /
    • 2021
  • In recent years, due to COVID-19, the process of shopping has become more restricted and difficult for customers. Based on this aspect, customers are more interested in online shopping to keep the Untact rules and stay safe, similarly ordering their product based on their need and interest with most straightforward and fastest ways. In this paper, the reinforcement learning technique is applied in the product recommendation system to improve the recommendation system quality for better and more related suggestions based on click patterns and users' profile information. The dataset used in this system was taken from an online shopping mall in Jeju island, South Korea. We have compared the proposed method with the recent state-of-the-art and research results, which show that reinforcement learning effectiveness is higher than other approaches.

A Study On User Skin Color-Based Foundation Color Recommendation Method Using Deep Learning (딥러닝을 이용한 사용자 피부색 기반 파운데이션 색상 추천 기법 연구)

  • Jeong, Minuk;Kim, Hyeonji;Gwak, Chaewon;Oh, Yoosoo
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.9
    • /
    • pp.1367-1374
    • /
    • 2022
  • In this paper, we propose an automatic cosmetic foundation recommendation system that suggests a good foundation product based on the user's skin color. The proposed system receives and preprocesses user images and detects skin color with OpenCV and machine learning algorithms. The system then compares the performance of the training model using XGBoost, Gradient Boost, Random Forest, and Adaptive Boost (AdaBoost), based on 550 datasets collected as essential bestsellers in the United States. Based on the comparison results, this paper implements a recommendation system using the highest performing machine learning model. As a result of the experiment, our system can effectively recommend a suitable skin color foundation. Thus, our system model is 98% accurate. Furthermore, our system can reduce the selection trials of foundations against the user's skin color. It can also save time in selecting foundations.

Development of the Demand Forecasting and Product Recommendation Method to Support the Small and Medium Distribution Companies based on the Product Recategorization (중소유통기업지원을 위한 상품 카테고리 재분류 기반의 수요예측 및 상품추천 방법론 개발)

  • Sangil Lee;Yeong-WoongYu;Dong-Gil Na
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.47 no.2
    • /
    • pp.155-167
    • /
    • 2024
  • Distribution and logistics industries contribute some of the biggest GDP(gross domestic product) in South Korea and the number of related companies are quarter of the total number of industries in the country. The number of retail tech companies are quickly increased due to the acceleration of the online and untact shopping trend. Furthermore, major distribution and logistics companies try to achieve integrated data management with the fulfillment process. In contrast, small and medium distribution companies still lack of the capacity and ability to develop digital innovation and smartization. Therefore, in this paper, a deep learning-based demand forecasting & recommendation model is proposed to improve business competitiveness. The proposed model is developed based on real sales transaction data to predict future demand for each product. The proposed model consists of six deep learning models, which are MLP(multi-layers perception), CNN(convolution neural network), RNN(recurrent neural network), LSTM(long short term memory), Conv1D-BiLSTM(convolution-long short term memory) for demand forecasting and collaborative filtering for the recommendation. Each model provides the best prediction result for each product and recommendation model can recommend best sales product among companies own sales list as well as competitor's item list. The proposed demand forecasting model is expected to improve the competitiveness of the small and medium-sized distribution and logistics industry.

A Case Study on the Recommendation Services for Customized Fashion Styles based on Artificial Intelligence (인공지능에 의한 개인 맞춤 패션 스타일 추천 서비스 사례 연구)

  • An, Hyosun;Kwon, Suehee;Park, Minjung
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.43 no.3
    • /
    • pp.349-360
    • /
    • 2019
  • This study analyzes the trends of recommendation services for customized fashion styles in relation to artificial intelligence. To achieve this goal, the study examined filtering technologies of collaborative, content based, and deep-learning as well as analyzed the characteristics of recommendation services in the users' purchasing process. The results of this study showed that the most universal recommendation technology is collaborative filtering. Collaborative filtering was shown to allow intuitive searching of similar fashion styles in the cognition of need stage, and appeared to be useful in comparing prices but not suitable for innovative customers who pursue early trends. Second, content based filtering was shown to utilize body shape as a key personal profile item in order to reduce the possibility of failure when selecting sizes online, which has limits to being able to wear the product beforehand. Third, fashion style recommendations applied with deep-learning intervene with all user processes of buying products online that was also confirmed to penetrate into the creative area of image tag services, virtual reality services, clothes wearing fit evaluation services, and individually customized design services.

Design of Deep Learning-based Tourism Recommendation System Based on Perceived Value and Behavior in Intelligent Cloud Environment (지능형 클라우드 환경에서 지각된 가치 및 행동의도를 적용한 딥러닝 기반의 관광추천시스템 설계)

  • Moon, Seok-Jae;Yoo, Kyoung-Mi
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.473-483
    • /
    • 2020
  • This paper proposes a tourism recommendation system in intelligent cloud environment using information of tourist behavior applied with perceived value. This proposed system applied tourist information and empirical analysis information that reflected the perceptual value of tourists in their behavior to the tourism recommendation system using wide and deep learning technology. This proposal system was applied to the tourism recommendation system by collecting and analyzing various tourist information that can be collected and analyzing the values that tourists were usually aware of and the intentions of people's behavior. It provides empirical information by analyzing and mapping the association of tourism information, perceived value and behavior to tourism platforms in various fields that have been used. In addition, the tourism recommendation system using wide and deep learning technology, which can achieve both memorization and generalization in one model by learning linear model components and neural only components together, and the method of pipeline operation was presented. As a result of applying wide and deep learning model, the recommendation system presented in this paper showed that the app subscription rate on the visiting page of the tourism-related app store increased by 3.9% compared to the control group, and the other 1% group applied a model using only the same variables and only the deep side of the neural network structure, resulting in a 1% increase in subscription rate compared to the model using only the deep side. In addition, by measuring the area (AUC) below the receiver operating characteristic curve for the dataset, offline AUC was also derived that the wide-and-deep learning model was somewhat higher, but more influential in online traffic.

Deep Learning-based Intelligent Preferred Fashion Recommendation using Implicit User Profiling (암묵적 사용자 프로파일링을 통한 딥러닝기반 지능형 선호 패션 추천)

  • Lee, Seolhwa;Lee, Chanhee;Jo, Jaechoon;Lim, Heuiseok
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.12
    • /
    • pp.25-32
    • /
    • 2018
  • In the massive online fashion market, it is not easy for consumers to find the fashion style they want by keyword search for their preferred style. It can be resolved into consumer needs based fashion recommendation. Most of the existing online shopping sites have collected cumtomer's preference style using the online quastionnair. In this paper, we propose a simple but effective novel model that resolve the traditional method in fashion profiling for consumer's preference style and needs using implicit profiling method. In addition, we proposed a learning model that reflects the characteristics of the images itself through the deep learning-based intelligent preferred fashion model learned from the collected data. We show that the proposed model gave meaningful results through the qualitative evaluation.

Collaborative Filtered Enhanced Recommendation System Using BERT (BERT를 이용한 협업 필터링 강화 추천 시스템)

  • Jin-Bae Kim;Young-Gon Kim;Jung-Min Park
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.5
    • /
    • pp.61-67
    • /
    • 2024
  • In recent years, artificial intelligence and deep learning technologies have made significant advances, and the BERT model has been recognized for its excellent contextual understanding in natural language processing based on the transformer architecture. This performance has the potential to take traditional recommendation systems to the next level. In this study, we adopt an approach that combines a collaborative filtering approach with a deep learning model to improve the performance of recommendation systems. Specifically, we implemented a system that uses BERT to analyze the sentiment of user reviews and embed users based on these review sentiments to find and recommend users with similar tastes. In the process, we also utilized Elasticsearch, an open-source search engine, for quick search and retrieval of recommended results. The approach of analyzing users' textual data to increase the accuracy and personalization of recommendations will play an important role in improving the user experience on various online services in the future.