• Title/Summary/Keyword: Deep learning recommendation

Search Result 120, Processing Time 0.026 seconds

Study on Implementation of Restaurant Recommendation System based on Deep Learning-based Consumer Data (딥러닝 기반의 소비자 데이터를 응용한 외식업체 추천 시스템 구현에 관한 연구)

  • Kim, Hee-young;Jung, Sun-mi;Kim, Woo-suk;Ryu, Gi-hwan;Son, Hyeon-kon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.2
    • /
    • pp.437-442
    • /
    • 2021
  • In this study, a recommendation algorithm was implemented by learning a deep learning-based classification model for consumer data. For this purpose, a meaningful result is presented as a result of learning using ResNet50, which is commonly used in classification tasks by converting user data into images.

Customized Pilot Training Platform with Collaborative Deep Learning in VR/AR Environment (VR/AR 환경의 협업 딥러닝을 적용한 맞춤형 조종사 훈련 플랫폼)

  • Kim, Hee Ju;Lee, Won Jin;Lee, Jae Dong
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.8
    • /
    • pp.1075-1087
    • /
    • 2020
  • Aviation ICT technology is a convergence technology between aviation and electronics, and has a wide variety of applications, including navigation and education. Among them, in the field of aerial pilot training, there are many problems such as the possibility of accidents during training and the lack of coping skills for various situations. This raises the need for a simulated pilot training system similar to actual training. In this paper, pilot training data were collected in pilot training system using VR/AR to increase immersion in flight training, and Customized Pilot Training Platform with Collaborative Deep Learning in VR/AR Environment that can recommend effective training courses to pilots is proposed. To verify the accuracy of the recommendation, the performance of the proposed collaborative deep learning algorithm with the existing recommendation algorithm was evaluated, and the flight test score was measured based on the pilot's training data base, and the deviations of each result were compared. The proposed service platform can expect more reliable recommendation results than previous studies, and the user survey for verification showed high satisfaction.

Auxiliary Stacked Denoising Autoencoder based Collaborative Filtering Recommendation

  • Mu, Ruihui;Zeng, Xiaoqin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2310-2332
    • /
    • 2020
  • In recent years, deep learning techniques have achieved tremendous successes in natural language processing, speech recognition and image processing. Collaborative filtering(CF) recommendation is one of widely used methods and has significant effects in implementing the new recommendation function, but it also has limitations in dealing with the problem of poor scalability, cold start and data sparsity, etc. Combining the traditional recommendation algorithm with the deep learning model has brought great opportunity for the construction of a new recommender system. In this paper, we propose a novel collaborative recommendation model based on auxiliary stacked denoising autoencoder(ASDAE), the model learns effective the preferences of users from auxiliary information. Firstly, we integrate auxiliary information with rating information. Then, we design a stacked denoising autoencoder based collaborative recommendation model to learn the preferences of users from auxiliary information and rating information. Finally, we conduct comprehensive experiments on three real datasets to compare our proposed model with state-of-the-art methods. Experimental results demonstrate that our proposed model is superior to other recommendation methods.

Recommendation System of University Major Subject based on Deep Reinforcement Learning (심층 강화학습 기반의 대학 전공과목 추천 시스템)

  • Ducsun Lim;Youn-A Min;Dongkyun Lim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.9-15
    • /
    • 2023
  • Existing simple statistics-based recommendation systems rely solely on students' course enrollment history data, making it difficult to identify classes that match students' preferences. To address this issue, this study proposes a personalized major subject recommendation system based on deep reinforcement learning (DRL). This system gauges the similarity between students based on structured data, such as the student's department, grade level, and course history. Based on this information, it recommends the most suitable major subjects by comprehensively considering information about each available major subject and evaluations of the student's courses. We confirmed that this DRL-based recommendation system provides useful insights for university students while selecting their major subjects, and our simulation results indicate that it outperforms conventional statistics-based recommendation systems by approximately 20%. In light of these results, we propose a new system that offers personalized subject recommendations by incorporating students' course evaluations. This system is expected to assist students significantly in finding major subjects that align with their preferences and academic goals.

Courses Recommendation Algorithm Based On Performance Prediction In E-Learning

  • Koffi, Dagou Dangui Augustin Sylvain Legrand;Ouattara, Nouho;Mambe, Digrais Moise;Oumtanaga, Souleymane;ADJE, Assohoun
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.148-157
    • /
    • 2021
  • The effectiveness of recommendation systems depends on the performance of the algorithms with which these systems are designed. The quality of the algorithms themselves depends on the quality of the strategies with which they were designed. These strategies differ from author to author. Thus, designing a good recommendation system means implementing the good strategies. It's in this context that several research works have been proposed on various strategies applied to algorithms to meet the needs of recommendations. Researchers are trying indefinitely to address this objective of seeking the qualities of recommendation algorithms. In this paper, we propose a new algorithm for recommending learning items. Learner performance predictions and collaborative recommendation methods are used as strategies for this algorithm. The proposed performance prediction model is based on convolutional neural networks (CNN). The results of the performance predictions are used by the proposed recommendation algorithm. The results of the predictions obtained show the efficiency of Deep Learning compared to the k-nearest neighbor (k-NN) algorithm. The proposed recommendation algorithm improves the recommendations of the learners' learning items. This algorithm also has the particularity of dissuading learning items in the learner's profile that are deemed inadequate for his or her training.

Deep learning-based custom problem recommendation algorithm to improve learning rate (학습률 향상을 위한 딥러닝 기반 맞춤형 문제 추천 알고리즘)

  • Lim, Min-Ah;Hwang, Seung-Yeon;Kim, Jeong-Jun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.171-176
    • /
    • 2022
  • With the recent development of deep learning technology, the areas of recommendation systems have also diversified. This paper studied algorithms to improve the learning rate and studied the significance results according to words through comparison with the performance characteristics of the Word2Vec model. The problem recommendation algorithm was implemented with the values expressed through the reflection of meaning and similarity test between texts, which are characteristics of the Word2Vec model. Through Word2Vec's learning results, problem recommendations were conducted using text similarity values, and problems with high similarity can be recommended. In the experimental process, it was seen that the accuracy decreased with the quantitative amount of data, and it was confirmed that the larger the amount of data in the data set, the higher the accuracy.

Multiple Fusion-based Deep Cross-domain Recommendation (다중 융합 기반 심층 교차 도메인 추천)

  • Hong, Minsung;Lee, WonJin
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.6
    • /
    • pp.819-832
    • /
    • 2022
  • Cross-domain recommender system transfers knowledge across different domains to improve the recommendation performance in a target domain that has a relatively sparse model. However, they suffer from the "negative transfer" in which transferred knowledge operates as noise. This paper proposes a novel Multiple Fusion-based Deep Cross-Domain Recommendation named MFDCR. We exploit Doc2Vec, one of the famous word embedding techniques, to fuse data user-wise and transfer knowledge across multi-domains. It alleviates the "negative transfer" problem. Additionally, we introduce a simple multi-layer perception to learn the user-item interactions and predict the possibility of preferring items by users. Extensive experiments with three domain datasets from one of the most famous services Amazon demonstrate that MFDCR outperforms recent single and cross-domain recommendation algorithms. Furthermore, experimental results show that MFDCR can address the problem of "negative transfer" and improve recommendation performance for multiple domains simultaneously. In addition, we show that our approach is efficient in extending toward more domains.

Deep Learning-based Tourism Recommendation System using Social Network Analysis

  • Jeong, Chi-Seo;Ryu, Ki-Hwan;Lee, Jong-Yong;Jung, Kye-Dong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.113-119
    • /
    • 2020
  • Numerous tourist-related data produced on the Internet contain not only simple tourist information but also diverse ideas and opinions from users. In order to derive meaningful information about tourist sites from such big data, the social network analysis of tourist keywords can identify the frequency of keywords and the relationship between keywords. Thus, it is possible to make recommendations more suitable for users by utilizing the clear recommendation criteria of tourist attractions and the relationship between tourist attractions. In this paper, a recommendation system was designed based on tourist site information through big data social network analysis. Based on user personality information, the types of tourism suitable for users are classified through deep learning and the network analysis among tourist keywords is conducted to identify the relationship between tourist attractions belonging to the type of tourism. Tour information for related tourist attractions shown on SNS and blogs will be recommended through tagging.

A Study for GAN-based Hybrid Collaborative Filtering Recommender (GAN기반의 하이브리드 협업필터링 추천기 연구)

  • Hee Seok Song
    • Journal of Information Technology Applications and Management
    • /
    • v.29 no.6
    • /
    • pp.81-93
    • /
    • 2022
  • As deep learning technology in natural language and visual processing has rapidly developed, collaborative filtering-based recommendation systems using deep learning technology are being actively introduced in the recommendation field. In this study, OCF-GAN, a hybrid collaborative filtering model using GAN, was proposed to solve the one-class and cold-start problems, and its usefulness was verified through performance evaluation. OCF-GAN based on conditional GAN consists of a generator that generates a pattern similar to the actual user preference pattern and a discriminator that tries to distinguish the actual preference pattern from the generated preference pattern. When the training is completed, user preference vectors are generated based on the actual distribution of preferred items. In addition, the cold-start problem was solved by using a hybrid collaborative filtering recommendation method that additionally utilizes user and item profiles. As a result of the performance evaluation, it was found that the performance of the OCF-GAN with additional information was superior in all indicators of the Top 5 and Top 20 recommendations compared to the existing GAN-based recommender. This phenomenon was more clearly revealed in experiments with cold-start users and items.

Design of a Recommendation System for Improving Deep Neural Network Performance

  • Juhyoung Sung;Kiwon Kwon;Byoungchul Song
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.49-56
    • /
    • 2024
  • There have been emerging many use-cases applying recommendation systems especially in online platform. Although the performance of recommendation systems is affected by a variety of factors, selecting appropriate features is difficult since most of recommendation systems have sparse data. Conventional matrix factorization (MF) method is a basic way to handle with problems in the recommendation systems. However, the MF based scheme cannot reflect non-linearity characteristics well. As deep learning technology has been attracted widely, a deep neural network (DNN) framework based collaborative filtering (CF) was introduced to complement the non-linearity issue. However, there is still a problem related to feature embedding for use as input to the DNN. In this paper, we propose an effective method using singular value decomposition (SVD) based feature embedding for improving the DNN performance of recommendation algorithms. We evaluate the performance of recommendation systems using MovieLens dataset and show the proposed scheme outperforms the existing methods. Moreover, we analyze the performance according to the number of latent features in the proposed algorithm. We expect that the proposed scheme can be applied to the generalized recommendation systems.