• Title/Summary/Keyword: Deep learning based control

Search Result 237, Processing Time 0.025 seconds

Voice Recognition-Based on Adaptive MFCC and Deep Learning for Embedded Systems (임베디드 시스템에서 사용 가능한 적응형 MFCC 와 Deep Learning 기반의 음성인식)

  • Bae, Hyun Soo;Lee, Ho Jin;Lee, Suk Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.10
    • /
    • pp.797-802
    • /
    • 2016
  • This paper proposes a noble voice recognition method based on an adaptive MFCC and deep learning for embedded systems. To enhance the recognition ratio of the proposed voice recognizer, ambient noise mixed into the voice signal has to be eliminated. However, noise filtering processes, which may damage voice data, diminishes the recognition ratio. In this paper, a filter has been designed for the frequency range within a voice signal, and imposed weights are used to reduce data deterioration. In addition, a deep learning algorithm, which does not require a database in the recognition algorithm, has been adapted for embedded systems, which inherently require small amounts of memory. The experimental results suggest that the proposed deep learning algorithm and HMM voice recognizer, utilizing the proposed adaptive MFCC algorithm, perform better than conventional MFCC algorithms in its recognition ratio within a noisy environment.

Trends in quantum reinforcement learning: State-of-thearts and the road ahead

  • Soohyun Park;Joongheon Kim
    • ETRI Journal
    • /
    • v.46 no.5
    • /
    • pp.748-758
    • /
    • 2024
  • This paper presents the basic quantum reinforcement learning theory and its applications to various engineering problems. With the advances in quantum computing and deep learning technologies, various research works have focused on quantum deep learning and quantum machine learning. In this paper, quantum neural network (QNN)-based reinforcement learning (RL) models are discussed and introduced. Moreover, the pros of the QNN-based RL algorithms and models, such as fast training, high scalability, and efficient learning parameter utilization, are presented along with various research results. In addition, one of the well-known multi-agent extensions of QNN-based RL models, the quantum centralized-critic and multiple-actor network, is also discussed and its applications to multi-agent cooperation and coordination are introduced. Finally, the applications and future research directions are introduced and discussed in terms of federated learning, split learning, autonomous control, and quantum deep learning software testing.

A Study on Preprocessing Method in Deep Learning for ICS Cyber Attack Detection (ICS 사이버 공격 탐지를 위한 딥러닝 전처리 방법 연구)

  • Seonghwan Park;Minseok Kim;Eunseo Baek;Junghoon Park
    • Smart Media Journal
    • /
    • v.12 no.11
    • /
    • pp.36-47
    • /
    • 2023
  • Industrial Control System(ICS), which controls facilities at major industrial sites, is increasingly connected to other systems through networks. With this integration and the development of intelligent attacks that can lead to a single external intrusion as a whole system paralysis, the risk and impact of security on industrial control systems are increasing. As a result, research on how to protect and detect cyber attacks is actively underway, and deep learning models in the form of unsupervised learning have achieved a lot, and many abnormal detection technologies based on deep learning are being introduced. In this study, we emphasize the application of preprocessing methodologies to enhance the anomaly detection performance of deep learning models on time series data. The results demonstrate the effectiveness of a Wavelet Transform (WT)-based noise reduction methodology as a preprocessing technique for deep learning-based anomaly detection. Particularly, by incorporating sensor characteristics through clustering, the differential application of the Dual-Tree Complex Wavelet Transform proves to be the most effective approach in improving the detection performance of cyber attacks.

Deep Meta Learning Based Classification Problem Learning Method for Skeletal Maturity Indication (골 성숙도 판별을 위한 심층 메타 학습 기반의 분류 문제 학습 방법)

  • Min, Jeong Won;Kang, Dong Joong
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.2
    • /
    • pp.98-107
    • /
    • 2018
  • In this paper, we propose a method to classify the skeletal maturity with a small amount of hand wrist X-ray image using deep learning-based meta-learning. General deep-learning techniques require large amounts of data, but in many cases, these data sets are not available for practical application. Lack of learning data is usually solved through transfer learning using pre-trained models with large data sets. However, transfer learning performance may be degraded due to over fitting for unknown new task with small data, which results in poor generalization capability. In addition, medical images require high cost resources such as a professional manpower and mcuh time to obtain labeled data. Therefore, in this paper, we use meta-learning that can classify using only a small amount of new data by pre-trained models trained with various learning tasks. First, we train the meta-model by using a separate data set composed of various learning tasks. The network learns to classify the bone maturity using the bone maturity data composed of the radiographs of the wrist. Then, we compare the results of the classification using the conventional learning algorithm with the results of the meta learning by the same number of learning data sets.

Motion predictive control for DPS using predicted drifted ship position based on deep learning and replay buffer

  • Lee, Daesoo;Lee, Seung Jae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.768-783
    • /
    • 2020
  • Typically, a Dynamic Positioning System (DPS) uses a PID feed-back system, and it often adopts a wind feed-forward system because of its easier implementation than a feed-forward system based on current or wave. But, because a ship's drifting motion is caused by wind, current, and wave drift loads, all three environmental loads should be considered. In this study, a motion predictive control for the PID feedback system of the DPS is proposed, which considers the three environmental loads by utilizing predicted drifted ship positions in the future since it contains information about the three environmental loads from the moment to the future. The prediction accuracy for the future drifted ship position is ensured by adopting deep learning algorithms and a replay buffer. Finally, it is shown that the proposed motion predictive system results in better station-keeping performance than the wind feed-forward system.

Reward Design of Reinforcement Learning for Development of Smart Control Algorithm (스마트 제어알고리즘 개발을 위한 강화학습 리워드 설계)

  • Kim, Hyun-Su;Yoon, Ki-Yong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.2
    • /
    • pp.39-46
    • /
    • 2022
  • Recently, machine learning is widely used to solve optimization problems in various engineering fields. In this study, machine learning is applied to development of a control algorithm for a smart control device for reduction of seismic responses. For this purpose, Deep Q-network (DQN) out of reinforcement learning algorithms was employed to develop control algorithm. A single degree of freedom (SDOF) structure with a smart tuned mass damper (TMD) was used as an example structure. A smart TMD system was composed of MR (magnetorheological) damper instead of passive damper. Reward design of reinforcement learning mainly affects the control performance of the smart TMD. Various hyper-parameters were investigated to optimize the control performance of DQN-based control algorithm. Usually, decrease of the time step for numerical simulation is desirable to increase the accuracy of simulation results. However, the numerical simulation results presented that decrease of the time step for reward calculation might decrease the control performance of DQN-based control algorithm. Therefore, a proper time step for reward calculation should be selected in a DQN training process.

Deep Learning based Object Detector for Vehicle Recognition on Images Acquired with Fisheye Lens Cameras (어안렌즈 카메라로 획득한 영상에서 차량 인식을 위한 딥러닝 기반 객체 검출기)

  • Hieu, Tang Quang;Yeon, Sungho;Kim, Jaemin
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.2
    • /
    • pp.128-135
    • /
    • 2019
  • This paper presents a deep learning-based object detection method for recognizing vehicles in images acquired through cameras installed on ceiling of underground parking lot. First, we present an image enhancement method, which improves vehicle detection performance under dark lighting environment. Second, we present a new CNN-based multiscale classifiers for detecting vehicles in images acquired through cameras with fisheye lens. Experiments show that the presented vehicle detector has better performance than the conventional ones.

A Study on the Establishment of Odor Management System in Gangwon-do Traditional Market

  • Min-Jae JUNG;Kwang-Yeol YOON;Sang-Rul KIM;Su-Hye KIM
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.6 no.2
    • /
    • pp.27-31
    • /
    • 2023
  • Purpose: Establishment of a real-time monitoring system for odor control in traditional markets in Gangwon-do and a system for linking prevention facilities. Research design, data and methodology: Build server and system logic based on data through real-time monitoring device (sensor-based). A temporary data generation program for deep learning is developed to develop a model for odor data. Results: A REST API was developed for using the model prediction service, and a test was performed to find an algorithm with high prediction probability and parameter values optimized for learning. In the deep learning algorithm for AI modeling development, Pandas was used for data analysis and processing, and TensorFlow V2 (keras) was used as the deep learning library. The activation function was swish, the performance of the model was optimized for Adam, the performance was measured with MSE, the model method was Functional API, and the model storage format was Sequential API (LSTM)/HDF5. Conclusions: The developed system has the potential to effectively monitor and manage odors in traditional markets. By utilizing real-time data, the system can provide timely alerts and facilitate preventive measures to control and mitigate odors. The AI modeling component enhances the system's predictive capabilities, allowing for proactive odor management.

Reproduction of wind speed time series in a two-dimensional numerical multiple-fan wind tunnel using deep reinforcement learning

  • Qingshan Yang;Zhenzhi Luo;Ke Li;Teng Wu
    • Wind and Structures
    • /
    • v.39 no.4
    • /
    • pp.271-285
    • /
    • 2024
  • The multiple-fan wind tunnel is an important facility for reproducing target wind field. Existing control methods for the multiple-fan wind tunnel can generate wind speeds that satisfy the target statistical characteristics of a wind field (e.g., power spectrum). However, the frequency-domain features cannot well represent the nonstationary winds of extreme storms (e.g., downburst). Therefore, this study proposes a multiple-fan wind tunnel control scheme based on Deep Reinforcement Learning (DRL), which will completely transform into a data-driven closed-loop control problem, to reproduce the target wind field in the time domain. Specifically, the control scheme adopts the Deep Deterministic Policy Gradient (DDPG) paradigm in which the strong fitting ability of Deep Neural Networks (DNN) is utilized. It can establish the complex relationship between the target wind speed time series and the current control strategy in the DRL-agent. To address the fluid memory effect of the wind field, this study innovatively designs the system state and control reward to improve the reproduction performance based on historical data. To validate the performance of the model, we established a simplified flow field based on Navier Stokes equations to simulate a two-dimensional numerical multiple-fan wind tunnel environment. Using the strategy of DRL decision maker, we generated a wind speed time series with minor error from the target under low Reynolds number conditions. This is the first time that the AI methods have been used to generate target wind speed time series in a multiple-fan wind tunnel environment. The hyperparameters in the DDPG paradigm are analyzed to identify a set of optimal parameters. With these efforts, the trained DRL-agent can simultaneously reproduce the wind speed time series in multiple positions.

Face recognition Based on Super-resolution Method Using Sparse Representation and Deep Learning (희소표현법과 딥러닝을 이용한 초고해상도 기반의 얼굴 인식)

  • Kwon, Ohseol
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.2
    • /
    • pp.173-180
    • /
    • 2018
  • This paper proposes a method to improve the performance of face recognition via super-resolution method using sparse representation and deep learning from low-resolution facial images. Recently, there have been many researches on ultra-high-resolution images using deep learning techniques, but studies are still under way in real-time face recognition. In this paper, we combine the sparse representation and deep learning to generate super-resolution images to improve the performance of face recognition. We have also improved the processing speed by designing in parallel structure when applying sparse representation. Finally, experimental results show that the proposed method is superior to conventional methods on various images.