• Title/Summary/Keyword: Deep learning based control

Search Result 237, Processing Time 0.027 seconds

Deep Learning based Singing Voice Synthesis Modeling (딥러닝 기반 가창 음성합성(Singing Voice Synthesis) 모델링)

  • Kim, Minae;Kim, Somin;Park, Jihyun;Heo, Gabin;Choi, Yunjeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.127-130
    • /
    • 2022
  • This paper is a study on singing voice synthesis modeling using a generator loss function, which analyzes various factors that may occur when applying BEGAN among deep learning algorithms optimized for image generation to Audio domain. and we conduct experiments to derive optimal quality. In this paper, we focused the problem that the L1 loss proposed in the BEGAN-based models degrades the meaning of hyperparameter the gamma(𝛾) which was defined to control the diversity and quality of generated audio samples. In experiments we show that our proposed method and finding the optimal values through tuning, it can contribute to the improvement of the quality of the singing synthesis product.

  • PDF

Using Faster-R-CNN to Improve the Detection Efficiency of Workpiece Irregular Defects

  • Liu, Zhao;Li, Yan
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.625-627
    • /
    • 2022
  • In the construction and development of modern industrial production technology, the traditional technology management mode is faced with many problems such as low qualification rates and high application costs. In the research, an improved workpiece defect detection method based on deep learning is proposed, which can control the application cost and improve the detection efficiency of irregular defects. Based on the research of the current situation of deep learning applications, this paper uses the improved Faster R-CNN network structure model as the core detection algorithm to automatically locate and classify the defect areas of the workpiece. Firstly, the robustness of the model was improved by appropriately changing the depth and the number of channels of the backbone network, and the hyperparameters of the improved model were adjusted. Then the deformable convolution is added to improve the detection ability of irregular defects. The final experimental results show that this method's average detection accuracy (mAP) is 4.5% higher than that of other methods. The model with anchor size and aspect ratio (65,129,257,519) and (0.2,0.5,1,1) has the highest defect recognition rate, and the detection accuracy reaches 93.88%.

Anomaly Detection of Facilities and Non-disruptive Operation of Smart Factory Using Kubernetes

  • Jung, Guik;Ha, Hyunsoo;Lee, Sangjun
    • Journal of Information Processing Systems
    • /
    • v.17 no.6
    • /
    • pp.1071-1082
    • /
    • 2021
  • Since the smart factory has been recently recognized as an industrial core requirement, various mechanisms to ensure efficient and stable operation have attracted much attention. This attention is based on the fact that in a smart factory environment where operating processes, such as facility control, data collection, and decision making are automated, the disruption of processes due to problems such as facility anomalies causes considerable losses. Although many studies have considered methods to prevent such losses, few have investigated how to effectively apply the solutions. This study proposes a Kubernetes based system applied in a smart factory providing effective operation and facility management. To develop the system, we employed a useful and popular open source project, and adopted deep learning based anomaly detection model for multi-sensor anomaly detection. This can be easily modified without interruption by changing the container image for inference. Through experiments, we have verified that the proposed method can provide system stability through nondisruptive maintenance, monitoring and non-disruptive updates for anomaly detection models.

Image Generation Method for Malware Detection Based on Machine Learning (기계학습 기반 악성코드 검출을 위한 이미지 생성 방법)

  • Jeon, YeJin;Kim, Jin-e;Ahn, Joonseon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.2
    • /
    • pp.381-390
    • /
    • 2022
  • Many attempts have been made to apply image recognition based on machine learning which has recently advanced dramatically to malware detection. They convert executable files to images and train deep learning networks like CNN to recognize or categorize dangerous executable files, which shows promising results. In this study, we are looking for an effective image generation method that may be used to identify malware using machine learning. To that end, we experiment and assess the effectiveness of various image generation methods in relation to malware detection. Then, we suggest a linear image creation method which represents control flow more clearly and our experiment shows our method can result in better precision in malware detection.

Availability Evaluation of Object Detection Based on Deep Learning Method by Using Multitemporal and Multisensor Data for Nuclear Activity Analysis (핵 활동 분석을 위한 다시기·다종 위성영상의 딥러닝 모델 기반 객체탐지의 활용성 평가)

  • Seong, Seon-kyeong;Choi, Ho-seong;Mo, Jun-sang;Choi, Jae-wan
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1083-1094
    • /
    • 2021
  • In order to monitor nuclear activity in inaccessible areas, it is necessary to establish a methodology to analyze changesin nuclear activity-related objects using high-resolution satellite images. However, traditional object detection and change detection techniques using satellite images have difficulties in applying detection results to various fields because effects of seasons and weather at the time of image acquisition. Therefore, in this paper, an object of interest was detected in a satellite image using a deep learning model, and object changes in the satellite image were analyzed based on object detection results. An initial training of the deep learning model was performed using an open dataset for object detection, and additional training dataset for the region of interest were generated and applied to transfer learning. After detecting objects by multitemporal and multisensory satellite images, we tried to detect changes in objects in the images by using them. In the experiments, it was confirmed that the object detection results of various satellite images can be directly used for change detection for nuclear activity-related monitoring in inaccessible areas.

A Reinforcement Learning Framework for Autonomous Cell Activation and Customized Energy-Efficient Resource Allocation in C-RANs

  • Sun, Guolin;Boateng, Gordon Owusu;Huang, Hu;Jiang, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.3821-3841
    • /
    • 2019
  • Cloud radio access networks (C-RANs) have been regarded in recent times as a promising concept in future 5G technologies where all DSP processors are moved into a central base band unit (BBU) pool in the cloud, and distributed remote radio heads (RRHs) compress and forward received radio signals from mobile users to the BBUs through radio links. In such dynamic environment, automatic decision-making approaches, such as artificial intelligence based deep reinforcement learning (DRL), become imperative in designing new solutions. In this paper, we propose a generic framework of autonomous cell activation and customized physical resource allocation schemes for energy consumption and QoS optimization in wireless networks. We formulate the problem as fractional power control with bandwidth adaptation and full power control and bandwidth allocation models and set up a Q-learning model to satisfy the QoS requirements of users and to achieve low energy consumption with the minimum number of active RRHs under varying traffic demand and network densities. Extensive simulations are conducted to show the effectiveness of our proposed solution compared to existing schemes.

Artificial Intelligence-based Security Control Construction and Countermeasures (인공지능기반 보안관제 구축 및 대응 방안)

  • Hong, Jun-Hyeok;Lee, Byoung Yup
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.1
    • /
    • pp.531-540
    • /
    • 2021
  • As cyber attacks and crimes increase exponentially and hacking attacks become more intelligent and advanced, hacking attack methods and routes are evolving unpredictably and in real time. In order to reinforce the enemy's responsiveness, this study aims to propose a method for developing an artificial intelligence-based security control platform by building a next-generation security system using artificial intelligence to respond by self-learning, monitoring abnormal signs and blocking attacks.The artificial intelligence-based security control platform should be developed as the basis for data collection, data analysis, next-generation security system operation, and security system management. Big data base and control system, data collection step through external threat information, data analysis step of pre-processing and formalizing the collected data to perform positive/false detection and abnormal behavior analysis through deep learning-based algorithm, and analyzed data Through the operation of a security system of prevention, control, response, analysis, and organic circulation structure, the next generation security system to increase the scope and speed of handling new threats and to reinforce the identification of normal and abnormal behaviors, and management of the security threat response system, Harmful IP management, detection policy management, security business legal system management. Through this, we are trying to find a way to comprehensively analyze vast amounts of data and to respond preemptively in a short time.

Procedure for monitoring autocorrelated processes using LSTM Autoencoder (LSTM Autoencoder를 이용한 자기상관 공정의 모니터링 절차)

  • Pyoungjin Ji;Jaeheon Lee
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.2
    • /
    • pp.191-207
    • /
    • 2024
  • Many studies have been conducted to quickly detect out-of-control situations in autocorrelated processes. The most traditionally used method is a residual control chart, which uses residuals calculated from a fitted time series model. However, many procedures for monitoring autocorrelated processes using statistical learning methods have recently been proposed. In this paper, we propose a monitoring procedure using the latent vector of LSTM Autoencoder, a deep learning-based unsupervised learning method. We compare the performance of this procedure with the LSTM Autoencoder procedure based on the reconstruction error, the RNN classification procedure, and the residual charting procedure through simulation studies. Simulation results show that the performance of the proposed procedure and the RNN classification procedure are similar, but the proposed procedure has the advantage of being useful in processes where sufficient out-of-control data cannot be obtained, because it does not require out-of-control data for training.

A Study on Binary Code Similarity Detection

  • Bastien Schoonaert;Hyun-Jun Kim;Yun-Heung Paek
    • Annual Conference of KIPS
    • /
    • 2024.10a
    • /
    • pp.216-219
    • /
    • 2024
  • Binary Code Similarity Detection (BCSD) plays a critical role in software security applications like vulnerability detection and malware analysis. This review surveys both traditional and machine-learning-based approaches to BCSD. Traditional methods, such as control flow graph matching and symbolic execution, have demonstrated effectiveness but suffer from scalability issues, particularly with obfuscated code. Modern machine learning techniques, including graph neural networks and deep learning models, offer improved adaptability across architectures and scalability. Despite these advancements, challenges remain in cross-platform detection, handling obfuscation, and deploying BCSD tools in real-world security scenarios. The review highlights recent innovations and outlines potential future directions for enhancing the robustness and efficiency of BCSD systems.

Design of Deep Learning-based Tourism Recommendation System Based on Perceived Value and Behavior in Intelligent Cloud Environment (지능형 클라우드 환경에서 지각된 가치 및 행동의도를 적용한 딥러닝 기반의 관광추천시스템 설계)

  • Moon, Seok-Jae;Yoo, Kyoung-Mi
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.473-483
    • /
    • 2020
  • This paper proposes a tourism recommendation system in intelligent cloud environment using information of tourist behavior applied with perceived value. This proposed system applied tourist information and empirical analysis information that reflected the perceptual value of tourists in their behavior to the tourism recommendation system using wide and deep learning technology. This proposal system was applied to the tourism recommendation system by collecting and analyzing various tourist information that can be collected and analyzing the values that tourists were usually aware of and the intentions of people's behavior. It provides empirical information by analyzing and mapping the association of tourism information, perceived value and behavior to tourism platforms in various fields that have been used. In addition, the tourism recommendation system using wide and deep learning technology, which can achieve both memorization and generalization in one model by learning linear model components and neural only components together, and the method of pipeline operation was presented. As a result of applying wide and deep learning model, the recommendation system presented in this paper showed that the app subscription rate on the visiting page of the tourism-related app store increased by 3.9% compared to the control group, and the other 1% group applied a model using only the same variables and only the deep side of the neural network structure, resulting in a 1% increase in subscription rate compared to the model using only the deep side. In addition, by measuring the area (AUC) below the receiver operating characteristic curve for the dataset, offline AUC was also derived that the wide-and-deep learning model was somewhat higher, but more influential in online traffic.