• Title/Summary/Keyword: Deep learning (DL)

Search Result 115, Processing Time 0.024 seconds

Comparative Study of Data Preprocessing and ML&DL Model Combination for Daily Dam Inflow Prediction (댐 일유입량 예측을 위한 데이터 전처리와 머신러닝&딥러닝 모델 조합의 비교연구)

  • Youngsik Jo;Kwansue Jung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.358-358
    • /
    • 2023
  • 본 연구에서는 그동안 수자원분야 강우유출 해석분야에 활용되었던 대표적인 머신러닝&딥러닝(ML&DL) 모델을 활용하여 모델의 하이퍼파라미터 튜닝뿐만 아니라 모델의 특성을 고려한 기상 및 수문데이터의 조합과 전처리(lag-time, 이동평균 등)를 통하여 데이터 특성과 ML&DL모델의 조합시나리오에 따른 일 유입량 예측성능을 비교 검토하는 연구를 수행하였다. 이를 위해 소양강댐 유역을 대상으로 1974년에서 2021년까지 축적된 기상 및 수문데이터를 활용하여 1) 강우, 2) 유입량, 3) 기상자료를 주요 영향변수(독립변수)로 고려하고, 이에 a) 지체시간(lag-time), b) 이동평균, c) 유입량의 성분분리조건을 적용하여 총 36가지 시나리오 조합을 ML&DL의 입력자료로 활용하였다. ML&DL 모델은 1) Linear Regression(LR), 2) Lasso, 3) Ridge, 4) SVR(Support Vector Regression), 5) Random Forest(RF), 6) LGBM(Light Gradient Boosting Model), 7) XGBoost의 7가지 ML방법과 8) LSTM(Long Short-Term Memory models), 9) TCN(Temporal Convolutional Network), 10) LSTM-TCN의 3가지 DL 방법, 총 10가지 ML&DL모델을 비교 검토하여 일유입량 예측을 위한 가장 적합한 데이터 조합 특성과 ML&DL모델을 성능평가와 함께 제시하였다. 학습된 모형의 유입량 예측 결과를 비교·분석한 결과, 소양강댐 유역에서는 딥러닝 중에서는 TCN모형이 가장 우수한 성능을 보였고(TCN>TCN-LSTM>LSTM), 트리기반 머신러닝중에서는 Random Forest와 LGBM이 우수한 성능을 보였으며(RF, LGBM>XGB), SVR도 LGBM수준의 우수한 성능을 나타내었다. LR, Lasso, Ridge 세가지 Regression모형은 상대적으로 낮은 성능을 보였다. 또한 소양강댐 댐유입량 예측에 대하여 강우, 유입량, 기상계열을 36가지로 조합한 결과, 입력자료에 lag-time이 적용된 강우계열의 조합 분석에서 세가지 Regression모델을 제외한 모든 모형에서 NSE(Nash-Sutcliffe Efficiency) 0.8이상(최대 0.867)의 성능을 보였으며, lag-time이 적용된 강우와 유입량계열을 조합했을 경우 NSE 0.85이상(최대 0.901)의 더 우수한 성능을 보였다.

  • PDF

Application of Reinforcement Learning in Detecting Fraudulent Insurance Claims

  • Choi, Jung-Moon;Kim, Ji-Hyeok;Kim, Sung-Jun
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.125-131
    • /
    • 2021
  • Detecting fraudulent insurance claims is difficult due to small and unbalanced data. Some research has been carried out to better cope with various types of fraudulent claims. Nowadays, technology for detecting fraudulent insurance claims has been increasingly utilized in insurance and technology fields, thanks to the use of artificial intelligence (AI) methods in addition to traditional statistical detection and rule-based methods. This study obtained meaningful results for a fraudulent insurance claim detection model based on machine learning (ML) and deep learning (DL) technologies, using fraudulent insurance claim data from previous research. In our search for a method to enhance the detection of fraudulent insurance claims, we investigated the reinforcement learning (RL) method. We examined how we could apply the RL method to the detection of fraudulent insurance claims. There are limited previous cases of applying the RL method. Thus, we first had to define the RL essential elements based on previous research on detecting anomalies. We applied the deep Q-network (DQN) and double deep Q-network (DDQN) in the learning fraudulent insurance claim detection model. By doing so, we confirmed that our model demonstrated better performance than previous machine learning models.

A Study on Detection of Malicious Android Apps based on LSTM and Information Gain (LSTM 및 정보이득 기반의 악성 안드로이드 앱 탐지연구)

  • Ahn, Yulim;Hong, Seungah;Kim, Jiyeon;Choi, Eunjung
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.5
    • /
    • pp.641-649
    • /
    • 2020
  • As the usage of mobile devices extremely increases, malicious mobile apps(applications) that target mobile users are also increasing. It is challenging to detect these malicious apps using traditional malware detection techniques due to intelligence of today's attack mechanisms. Deep learning (DL) is an alternative technique of traditional signature and rule-based anomaly detection techniques and thus have actively been used in numerous recent studies on malware detection. In order to develop DL-based defense mechanisms against intelligent malicious apps, feeding recent datasets into DL models is important. In this paper, we develop a DL-based model for detecting intelligent malicious apps using KU-CISC 2018-Android, the most up-to-date dataset consisting of benign and malicious Android apps. This dataset has hardly been addressed in other studies so far. We extract OPcode sequences from the Android apps and preprocess the OPcode sequences using an N-gram model. We then feed the preprocessed data into LSTM and apply the concept of Information Gain to improve performance of detecting malicious apps. Furthermore, we evaluate our model with numerous scenarios in order to verify the model's design and performance.

Development of a Hybrid Deep-Learning Model for the Human Activity Recognition based on the Wristband Accelerometer Signals

  • Jeong, Seungmin;Oh, Dongik
    • Journal of Internet Computing and Services
    • /
    • v.22 no.3
    • /
    • pp.9-16
    • /
    • 2021
  • This study aims to develop a human activity recognition (HAR) system as a Deep-Learning (DL) classification model, distinguishing various human activities. We solely rely on the signals from a wristband accelerometer worn by a person for the user's convenience. 3-axis sequential acceleration signal data are gathered within a predefined time-window-slice, and they are used as input to the classification system. We are particularly interested in developing a Deep-Learning model that can outperform conventional machine learning classification performance. A total of 13 activities based on the laboratory experiments' data are used for the initial performance comparison. We have improved classification performance using the Convolutional Neural Network (CNN) combined with an auto-encoder feature reduction and parameter tuning. With various publically available HAR datasets, we could also achieve significant improvement in HAR classification. Our CNN model is also compared against Recurrent-Neural-Network(RNN) with Long Short-Term Memory(LSTM) to demonstrate its superiority. Noticeably, our model could distinguish both general activities and near-identical activities such as sitting down on the chair and floor, with almost perfect classification accuracy.

Encoding Dictionary Feature for Deep Learning-based Named Entity Recognition

  • Ronran, Chirawan;Unankard, Sayan;Lee, Seungwoo
    • International Journal of Contents
    • /
    • v.17 no.4
    • /
    • pp.1-15
    • /
    • 2021
  • Named entity recognition (NER) is a crucial task for NLP, which aims to extract information from texts. To build NER systems, deep learning (DL) models are learned with dictionary features by mapping each word in the dataset to dictionary features and generating a unique index. However, this technique might generate noisy labels, which pose significant challenges for the NER task. In this paper, we proposed DL-dictionary features, and evaluated them on two datasets, including the OntoNotes 5.0 dataset and our new infectious disease outbreak dataset named GFID. We used (1) a Bidirectional Long Short-Term Memory (BiLSTM) character and (2) pre-trained embedding to concatenate with (3) our proposed features, named the Convolutional Neural Network (CNN), BiLSTM, and self-attention dictionaries, respectively. The combined features (1-3) were fed through BiLSTM - Conditional Random Field (CRF) to predict named entity classes as outputs. We compared these outputs with other predictions of the BiLSTM character, pre-trained embedding, and dictionary features from previous research, which used the exact matching and partial matching dictionary technique. The findings showed that the model employing our dictionary features outperformed other models that used existing dictionary features. We also computed the F1 score with the GFID dataset to apply this technique to extract medical or healthcare information.

A review of Explainable AI Techniques in Medical Imaging (의료영상 분야를 위한 설명가능한 인공지능 기술 리뷰)

  • Lee, DongEon;Park, ChunSu;Kang, Jeong-Woon;Kim, MinWoo
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.259-270
    • /
    • 2022
  • Artificial intelligence (AI) has been studied in various fields of medical imaging. Currently, top-notch deep learning (DL) techniques have led to high diagnostic accuracy and fast computation. However, they are rarely used in real clinical practices because of a lack of reliability concerning their results. Most DL models can achieve high performance by extracting features from large volumes of data. However, increasing model complexity and nonlinearity turn such models into black boxes that are seldom accessible, interpretable, and transparent. As a result, scientific interest in the field of explainable artificial intelligence (XAI) is gradually emerging. This study aims to review diverse XAI approaches currently exploited in medical imaging. We identify the concepts of the methods, introduce studies applying them to imaging modalities such as computational tomography (CT), magnetic resonance imaging (MRI), and endoscopy, and lastly discuss limitations and challenges faced by XAI for future studies.

Prediction and Determination of Correction Coefficients for Blast Vibration Based on AI (AI 기반의 발파진동 계수 예측 및 보정계수 산정에 관한 연구)

  • Kwang-Ho You;Myung-Kyu Song;Hyun-Koo Lee;Nam-Jung Kim
    • Explosives and Blasting
    • /
    • v.41 no.3
    • /
    • pp.26-37
    • /
    • 2023
  • In order to determine the amount of explosives that can minimize the vibration generated during tunnel construction using the blasting method, it is necessary to derive the blasting vibration coefficients, K and n, by analyzing the vibration records of trial blasting in the field or under similar conditions. In this study, we aimed to develop a technique that can derive reasonable K and n when trial blasting cannot be performed. To this end, we collected full-scale trial blast data and studied how to predict the blast vibration coefficient (K, n) according to the type of explosive, center cut blasting method, rock origin and type, and rock grade using deep learning (DL). In addition, the correction value between full-scale and borehole trial blasting results was calculated to compensate for the limitations of the borehole trial blasting results and to carry out a design that aligns more closely with reality. In this study, when comparing the available explosive amount according to the borehole trial blasting result equation, the predictions from deep learning (DL) exceed 50%, and the result with the correction value is similar to other blast vibration estimation equations or about 20% more, enabling more economical design.

Real-Time CCTV Based Garbage Detection for Modern Societies using Deep Convolutional Neural Network with Person-Identification

  • Syed Muhammad Raza;Syed Ghazi Hassan;Syed Ali Hassan;Soo Young Shin
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.2
    • /
    • pp.109-120
    • /
    • 2024
  • Trash or garbage is one of the most dangerous health and environmental problems that affect pollution. Pollution affects nature, human life, and wildlife. In this paper, we propose modern solutions for cleaning the environment of trash pollution by enforcing strict action against people who dump trash inappropriately on streets, outside the home, and in unnecessary places. Artificial Intelligence (AI), especially Deep Learning (DL), has been used to automate and solve issues in the world. We availed this as an excellent opportunity to develop a system that identifies trash using a deep convolutional neural network (CNN). This paper proposes a real-time garbage identification system based on a deep CNN architecture with eight distinct classes for the training dataset. After identifying the garbage, the CCTV camera captures a video of the individual placing the trash in the incorrect location and sends an alert notice to the relevant authority.

Trends in the Use of Artificial Intelligence in Medical Image Analysis (의료영상 분석에서 인공지능 이용 동향)

  • Lee, Gil-Jae;Lee, Tae-Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.4
    • /
    • pp.453-462
    • /
    • 2022
  • In this paper, the artificial intelligence (AI) technology used in the medical image analysis field was analyzed through a literature review. Literature searches were conducted on PubMed, ResearchGate, Google and Cochrane Review using the key word. Through literature search, 114 abstracts were searched, and 98 abstracts were reviewed, excluding 16 duplicates. In the reviewed literature, AI is applied in classification, localization, disease detection, disease segmentation, and fit degree of registration images. In machine learning (ML), prior feature extraction and inputting the extracted feature values into the neural network have disappeared. Instead, it appears that the neural network is changing to a deep learning (DL) method with multiple hidden layers. The reason is thought to be that feature extraction is processed in the DL process due to the increase in the amount of memory of the computer, the improvement of the calculation speed, and the construction of big data. In order to apply the analysis of medical images using AI to medical care, the role of physicians is important. Physicians must be able to interpret and analyze the predictions of AI algorithms. Additional medical education and professional development for existing physicians is needed to understand AI. Also, it seems that a revised curriculum for learners in medical school is needed.

A Detecting Technique for the Climatic Factors that Aided the Spread of COVID-19 using Deep and Machine Learning Algorithms

  • Al-Sharari, Waad;Mahmood, Mahmood A.;Abd El-Aziz, A.A.;Azim, Nesrine A.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.131-138
    • /
    • 2022
  • Novel Coronavirus (COVID-19) is viewed as one of the main general wellbeing theaters on the worldwide level all over the planet. Because of the abrupt idea of the flare-up and the irresistible force of the infection, it causes individuals tension, melancholy, and other pressure responses. The avoidance and control of the novel Covid pneumonia have moved into an imperative stage. It is fundamental to early foresee and figure of infection episode during this troublesome opportunity to control of its grimness and mortality. The entire world is investing unimaginable amounts of energy to fight against the spread of this lethal infection. In this paper, we utilized machine learning and deep learning techniques for analyzing what is going on utilizing countries shared information and for detecting the climate factors that effect on spreading Covid-19, such as humidity, sunny hours, temperature and wind speed for understanding its regular dramatic way of behaving alongside the forecast of future reachability of the COVID-2019 around the world. We utilized data collected and produced by Kaggle and the Johns Hopkins Center for Systems Science. The dataset has 25 attributes and 9566 objects. Our Experiment consists of two phases. In phase one, we preprocessed dataset for DL model and features were decreased to four features humidity, sunny hours, temperature and wind speed by utilized the Pearson Correlation Coefficient technique (correlation attributes feature selection). In phase two, we utilized the traditional famous six machine learning techniques for numerical datasets, and Dense Net deep learning model to predict and detect the climatic factor that aide to disease outbreak. We validated the model by using confusion matrix (CM) and measured the performance by four different metrics: accuracy, f-measure, recall, and precision.