• Title/Summary/Keyword: Deep eutectic mixture

Search Result 3, Processing Time 0.019 seconds

Effect of deep eutectic solvent (DES) on the extraction of asiaticoside and madecassoside from Centella asiatica (병풀(Centella asiatica)로부터의 asiaticoside와 madecassoside의 추출효율에 미치는 DES의 영향)

  • Jaeyeong Choi;Yuim Jeon;Sung Ho Ha
    • Analytical Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.128-134
    • /
    • 2023
  • Centella asiatica (C. asiatica) extracts, including asiaticoside and madecassoside, are used in ointments to treat the wound and atopic dermatitis due to their antibacterial and skin-regenerating effects in Asia. Therefore, research on the cultivation and extraction efficiency of C. asiatica is being actively conducted to increase commercialization efficiency. In this study, various deep eutectic solvents (DESs) were prepared and used as the extraction solvents according to the mole ratio between the hydrogen bond acceptor (HBA) and hydrogen bond donor (HBD). And then, the extraction yields in distilled water (DW) and methanol (MeOH), commonly used extraction solvents for C. asiatica, were compared and analyzed by HPLC in the optimized operating condition. As a result, a mixture of DW and DES at a ratio of 3:7 showed about 1.4 times higher extraction efficiency than MeOH only. Conversely, the extraction efficiency in a mixture of MeOH and DES at a ratio of 3:7 was about 6 % lower than that in MeOH only.

Enzyme-Catalyzed Henry Reaction in Choline Chloride-Based Deep Eutectic Solvents

  • Tian, Xuemei;Zhang, Suoqin;Zheng, Liangyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.1
    • /
    • pp.80-88
    • /
    • 2016
  • The enzyme-catalyzed Henry reaction was realized using deep eutectic solvents (DESs) as a reaction medium. The lipase from Aspergillus niger (lipase AS) showed excellent catalytic activity toward the substrates aromatic aldehydes and nitromethane in choline chloride:glycerol at a molar ratio of 1:2. Addition of 30 vol% water to DES further improved the lipase activity and inhibited DES-catalyzed transformation. A final yield of 92.2% for the lipase AS-catalyzed Henry reaction was achieved under optimized reaction conditions in only 4 h. In addition, the lipase AS activity was improved by approximately 3-fold in a DES-water mixture compared with that in pure water, which produced a final yield of only 33.4%. Structural studies with fluorescence spectroscopy showed that the established strong hydrogen bonds between DES and water may be the main driving force that affects the spatial conformation of the enzyme, leading to a change in lipase activity. The methodology was also extended to the aza-Henry reaction, which easily occurred in contrast to that in pure water. The enantioselectivity of both Henry and aza-Henry reactions was not found. However, the results are still remarkable, as we report the first use of DES as a reaction medium in a lipase-catalyzed Henry reaction.