• Title/Summary/Keyword: Deep drilling

Search Result 139, Processing Time 0.024 seconds

Analysis of the Influence of the Design Factors and Modeling for the 8inch Class Down-the-Hole Hammer (8인치급 다운더홀(DTH) 해머의 모델링 및 설계 인자에 따른 영향도 분석)

  • Lee, Chung No;Hong, Ki Chang;Jeong, Heon Sul
    • Journal of Drive and Control
    • /
    • v.14 no.4
    • /
    • pp.1-8
    • /
    • 2017
  • The Down-the-Hole hammer is one of the pneumatic drill equipment used for grinding, drilling, and mining. One the advantages of which is that a reduction work efficiency at deep site are relatively small compared to other drilling methods. Due to the large vibration in the underground area, it is difficult to measure the performance of the hammer, and hammer testing requires substantial production cost and operating expenses so research on the development of the hammer is insufficient. Therefore, this study has developed a dynamic simulation model that apprehends the operating principles of an 8-inch DTH hammer and calculates performance data such as performance impact force, piston speed, and BPM. By using the simulation model, design factors related to strike force and BPM were selected, and the influence of each design factors on performance was analyzed through ANOVA analysis. As a result, be the most important for BPM and the strike force are position of upper port that push the piston in the direction of the bit and in BPM, the size of the empty space between the bits and the piston is the second most important design factor.

Study on the Geological Structure around KURT Using a Deep Borehole Investigation (장심도 시추공을 이용한 KURT 주변의 지질구조 연구)

  • Park, Kyung-Woo;Kim, Kyung-Su;Koh, Yong-Kwon;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.4
    • /
    • pp.279-291
    • /
    • 2010
  • To characterize geological features in study area for high-level radioactive waste disposal research, KAERI (Korea Atomic Energy Research Institute) has been performing the several geological investigations such as geophysical surveys and borehole drilling since 1997. Especially, the KURT (KAERI Underground Research Tunnel) constructed to understand the deep geological environments in 2006. Recently, the deep borehole of 500 m depths was drilled to confirm and validate the geological model at the left research module of the KURT. The objective of this research was to identify the geological structures around KURT using the data obtained from the deep borehole investigation. To achieve the purpose, several geological investigations such as geophysical and borehole fracture surveys were carried out simultaneously. As a result, 7 fracture zones were identified in deep borehole located in the KURT. As one of important parts of site characterization on KURT area, the results will be used to revise the geological model of the study area.

A Case Study of Electrical Resistivity and Borehole Imaging Methods for Detecting Underground Cavities and Monitoring Ground Subsidence at Abandoned Underground Mines (폐광산 지역의 공동 탐지 및 지반침하 모니터링을 위한 전기비저항탐사와 시추공영상촬영기법 적용 사례)

  • Choi, Jeong-Ryul;Kim, Seung-Sep;Park, Sang-Kyu;Shin, Kwang-Soo;Kang, Byung-Chun
    • Journal of the Korean earth science society
    • /
    • v.34 no.3
    • /
    • pp.195-208
    • /
    • 2013
  • We employed electrical resistivity and optical borehole imaging methods to identify underground cavities and determine ground subsidence rate at the study area affected by land subsidence due to abandoned underground mines. At the study site 1, the anomalous zones of low resistivity ranging between 100 ohm-meter and 150 ohm-meter were observed and confirmed as an abandoned underground mine by subsequent borehole drilling and optical borehole imaging. Although the electrical resistivity survey was unavailable due to the paved surface of the study site 2, we were able to locate another abandoned underground mine with the collapsed mine shaft based on the distribution of the ore veins and confirmed it with borehole drilling. In addition, we measured vertical displacements of underground features indicating underground subsidence by conducting optical borehole imaging 6 times over a period of 43 days at the study site 2. The displacement magnitude at the deep segment caused by subsidence appeared to be 3 times larger than those at the shallow segment. Similarly, the displacement duration at the deep segment was 4 times longer than those at the shallow segment. Therefore, the combination of electrical resistivity and optical borehole imaging methods can be effectively applicable to detect and monitor ground subsidence caused by underground cavities.

Evaluation of Hydrogeochemistry of Geothermal Water at Heunghae, Pohang Using Pumping Test Results (양수시험에 의한 포항 흥해지역 심부지열수의 수리지화학적 규명)

  • Cho Byong-Wook;Yun Uk;Song Yoon-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.3
    • /
    • pp.20-30
    • /
    • 2006
  • Hydrogeochemistry of deep geothermal water (temperature: $42.2-47.9^{\circ}C$) at Heunghae, Pohang was evaluated using core logging, temperature and electrical conductivity (EC) logging before and after pumping tests, chemical analysis of geothermal water with depth, and observation of water quality variations during pumping tests. The geology of the area is composed of highly fractured marine sedimentary rocks. The hydrogeochemistry of geothermal water varies with drilling depth, distance from the coast, and pumping duration. According to the temperature and EC variations during 4 times of pumping tests, main aquifer of the area is considered as the fractured zones (540 to 900 m) developed in rhyolitic rocks. The high content of Na and $HCO_3$ in geothermal water can be explained by the inflow of deep groundwater from inland regulated by dissolution of silicates and carbonates. High TDS, Na and Cl concentrations indicate that the geothermal water was also strongly affected by seawater. The molar ratios of Na:Cl ($0.88{\sim}2.14$) and Br:Cl ($21.0{\sim}24.9{\times}10^{-4}$) deviate from those of seawater (0.84 and $34.7{\times}10^{-4}$, respectively), suggesting that water-rock interaction also plays an important role in the formation of water quality.

P-Impedance Inversion in the Shallow Sediment of the Korea Strait by Integrating Core Laboratory Data and the Seismic Section (심부 시추코어 실험실 분석자료와 탄성파 탐사자료 통합 분석을 통한 대한해협 천부 퇴적층 임피던스 도출)

  • Snons Cheong;Gwang Soo Lee;Woohyun Son;Gil Young Kim;Dong Geun Yoo;Yunseok Choi
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.3
    • /
    • pp.138-149
    • /
    • 2023
  • In geoscience and engineering the geological characteristics of sediment strata is crucial and possible if reliable borehole logging and seismic data are available. To investigate the characteristics of the shallow strata in the Korea Strait, laboratory sonic logs were obtained from deep borehole data and seismic section. In this study, we integrated and analyzed the sonic log data obtained from the drilling core (down to a depth of 200 m below the seabed) and multichannel seismic section. The correlation value was increased from 15% to 45% through time-depth conversion. An initial model of P-wave impedance was set, and the results were compared by performing model-based, band-limited, and sparse-spike inversions. The derived P-impedance distributions exhibited differences between sediment-dominant and unconsolidated layers. The P-impedance inversion process can be used as a framework for an integrated analysis of additional core logs and seismic data in the future. Furthermore, the derived P-impedance can be used to detect shallow gas-saturated regions or faults in the shallow sediment. As domestic deep drilling is being performed continuously for identifying the characteristics of carbon dioxide storage candidates and evaluating resources, the applicability of the integrated inversion will increase in the future.

A TBM data-based ground prediction using deep neural network (심층 신경망을 이용한 TBM 데이터 기반의 굴착 지반 예측 연구)

  • Kim, Tae-Hwan;Kwak, No-Sang;Kim, Taek Kon;Jung, Sabum;Ko, Tae Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.1
    • /
    • pp.13-24
    • /
    • 2021
  • Tunnel boring machine (TBM) is widely used for tunnel excavation in hard rock and soft ground. In the perspective of TBM-based tunneling, one of the main challenges is to drive the machine optimally according to varying geological conditions, which could significantly lead to saving highly expensive costs by reducing the total operation time. Generally, drilling investigations are conducted to survey the geological ground before the TBM tunneling. However, it is difficult to provide the precise ground information over the whole tunnel path to operators because it acquires insufficient samples around the path sparsely and irregularly. To overcome this issue, in this study, we proposed a geological type classification system using the TBM operating data recorded in a 5 s sampling rate. We first categorized the various geological conditions (here, we limit to granite) as three geological types (i.e., rock, soil, and mixed type). Then, we applied the preprocessing methods including outlier rejection, normalization, and extracting input features, etc. We adopted a deep neural network (DNN), which has 6 hidden layers, to classify the geological types based on TBM operating data. We evaluated the classification system using the 10-fold cross-validation. Average classification accuracy presents the 75.4% (here, the total number of data were 388,639 samples). Our experimental results still need to improve accuracy but show that geology information classification technique based on TBM operating data could be utilized in the real environment to complement the sparse ground information.

Distribution and Statistical Analysis of Discontinuities in Deep Drillcore (심부시추코어를 활용한 불연속면의 분포 특성 및 통계학적 해석)

  • Junghae Choi;Youjin Jung;Dae-Sung Cheon
    • The Journal of Engineering Geology
    • /
    • v.34 no.3
    • /
    • pp.415-427
    • /
    • 2024
  • This study undertook a quantitative analysis of the distribution of fractures in deep drillcore from a Precambrian metamorphic complex on the north face of Hongcheon-gun, Gangwon-do, Korea. The fracture distribution with depth, inclination of fractures, and grain size in the fracture zone were measured and statistical techniques applied to derive probability distributions of fracture intervals. Analysis of the inclination angles of fracture planes showed that sub-horizontal fractures are dominant, and fracture spacing is mainly ≤0.5 m, with a median of 0.09 m, first quartile of 0.04 m, and third quartile of 0.18 m, indicating very dense fracture development. Statistical analysis of joint properties was undertaken with fitting using five probability density functions (double Weibull, exponential, generalized logistic, gamma, and lognormal). The lognormal distribution (sum of squared errors, SSE = 2.80) yielded the best fit based on the sum of residual squares. Quantitative characterization of the fracture characteristics of deep bedrock in the Hongcheon area is important for various geotechnical applications such as groundwater flow modeling, slope stability assessment, and underground structure design. In future studies, it will be necessary to combine in situ stress measurements and geophysical surveys to determine the relationship between fracture development and the local stress field.

Geoacoustic Model at the SSDP-105 Long-core Site of the Ulsan Coastal Area, the East Sea (동해 울산 연안해역 SSDP-105 심부코어 지점의 지음향 모델)

  • Ryang, Woo-Hun;Lee, Gwang-Soo;Hahn, Jooyoung
    • Journal of the Korean earth science society
    • /
    • v.39 no.2
    • /
    • pp.154-163
    • /
    • 2018
  • Geoacoustic model comprises physical and acoustic properties of submarine bottom layers influencing sound transmission through sea water and underwater. This study suggested for the first time that we made a geoacoustic model of long-coring bottom layers at the SSDP-105 drilling site of the Ulsan coastal area, which is located in the southwestern inner shelf of the East Sea. The geoacoustic model of 52 m depth below seafloor with three-layer geoacoustic units was reconstructed in the coastal sedimentary strata at 79 m in water depth. The geoacoustic model was based on the data of a deep-drilled sediment core of SSDP-105 and sparker seismic profiles in the study area. For actual modeling, the geoacoustic property values of the models were compensated to in situ depth values below the sea floor using the Hamilton modeling method. We suggest that the geoacoustic model be used for geoacoustic and underwater acoustic experiments of mid- and low-frequency reflecting on the deep bottom layers in the Ulsan coastal area of the East Sea.

Performance Evaluation of Closed Co-axial Ground Heat Exchanger in the case of 2000m-Depth Single Well (2000m 단일 시추공에서 밀폐 동축 방식 지중 열교환기의 취득온도 성능평가)

  • Ryoo, Yeon-Su;Kim, Jae-Hyeok;Jeong, Sang-Hwa
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.83-92
    • /
    • 2016
  • The Korean government has been making efforts to use renewable energy to reduce the consumption of fossil fuels for the heating system in greenhouses. The number of greenhouses that installed a geothermal heat pump system is 201 EA with the volume of 132.8 ha and 108,467kW from 2010-2014. The geothermal system, called a shallow geothermal system, with the temperature of $10-20^{\circ}C$ has accessories composed of a BHE and heat pump. Moreover, it is necessary to have a wide area to install the BHE and to drill to the depth of 200 m. On the other hand, even though the deep geothermal system needs a high drilling cost to obtain the temperature of $40-150^{\circ}C$, the system has the advantages of the small area required for the BHE and operation without a heat pump. In this study, the temperature of the return water and heat capacity were measured to obtain the geothermal energy efficiently on the condition of the water flow being changed in the BHE. The temperature according to the return water changes through the heat conduction based on the increase of ground temperature up to the underground depth has been calculated to conduct a simulation and is compared with the field experiment test results.

Kerogen Facies of the Cretaceous Black Shales from the Angola Basin (DSDP Site 530), South Atlantic (앙골라분지 백악기 흑색셰일의 유기물상)

  • 박영수
    • 한국해양학회지
    • /
    • v.22 no.2
    • /
    • pp.87-104
    • /
    • 1987
  • The middle Cretaceous stratigraphec section of Deep Sea Drilling Project (DSDP) Site 530 in the Angola Basin is characterized by cyclic interbeds of organic-carbon-rich black shales and organic-carbon-poor red and green claystones, namely the black shale sequence. A number of samples from the black shale sequence were analyzed for the typesand distribution of insoluble sedimentary organic matter(kerogen) in order to give more information on the depositional conditions of the black shales in the Angola Basin. The dominant type of kerogen in the black shale sequence at Site 530 is amorphous organic matter mainly of marine planktonic algal origin. It probably consists of remains of some unfossiliqed dinoflagellates. The cyclic preservation of organic-carbon-rich black shales in the Angola Basin during the mid-Cretaceous could be explained by the low dissolved-oxygen concentration in the warm, saline deep and bottom waters combined with the sluggish circulation within the highly restricted basin, and the periodic high productivity in the surface waters.

  • PDF