• Title/Summary/Keyword: Deep borehole disposal (DBD) system

Search Result 3, Processing Time 0.013 seconds

A Foreign Cases Study of the Deep Borehole Disposal System for High-Level Radioactive Waste (고준위 방사성폐기물 심부시추공 처분시스템 개발 해외사례 분석)

  • Lee, Jongyoul;Kim, Geonyoung;Bae, Daeseok;Kim, Kyeongsoo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.2
    • /
    • pp.121-133
    • /
    • 2014
  • If the spent fuels or the high-level radioactive wastes can be disposed of in the depth of 3~5 km and more stable rock formation, it has several advantages. For example, (1)significant fluid flow through basement rock is prevented, in part, by low permeability, poorly connected transport pathways, and (2)overburden self-sealing. (3)Deep fluids also resist vertical movement because they are density stratified and reducing conditions will sharply limit solubility of most dose-critical radionuclides at the depth. Finally, (4) high ionic strengths of deep fluids will prevent colloidal transport. Therefore, as an alternative disposal concept to the deep geological disposal concept(DGD), very deep borehole disposal(DBD) technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, for the preliminary applicability analyses of the DBD system for the spent fuels or high level wastes, the DBD concepts which have been developed by some countries according to the rapid advance in the development of drilling technology were reviewed. To do this, the general concept of DBD system was checked and the study cases of foreign countries were described and analyzed. These results will be used as an input for the analyses of applicability for DBD in Korea.

Preliminary Analyses of the Deep Geoenvironmental Characteristics for the Deep Borehole Disposal of High-level Radioactive Waste in Korea (고준위 방사성폐기물 심부시추공 처분을 위한 국내 심부지질 환경특성 예비분석)

  • LEE, Jongyoul;LEE, Minsoo;CHOI, Heuijoo;KIM, Geonyoung;KIM, Kyungsu
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.2
    • /
    • pp.179-188
    • /
    • 2016
  • Spent fuels from nuclear power plants, as well as high-level radioactive waste from the recycling of spent fuels, should be safely isolated from human environment for an extremely long time. Recently, meaningful studies on the development of deep borehole radioactive waste disposal system in 3-5 km depth have been carried out in USA and some countries in Europe, due to great advance in deep borehole drilling technology. In this paper, domestic deep geoenvironmental characteristics are preliminarily investigated to analyze the applicability of deep borehole disposal technology in Korea. To do this, state-of-the art technologies in USA and some countries in Europe are reviewed, and geological and geothermal data from the deep boreholes for geothermal usage are analyzed. Based on the results on the crystalline rock depth, the geothermal gradient and the spent fuel types generated in Korea, a preliminary deep borehole concept including disposal canister and sealing system, is suggested.

Evaluation of Silicon Carbide (SiC) for Deep Borehole Disposal Canister (심부시추공 처분용기 재료로서 SiC 세라믹의 적합성 평가)

  • LEE, Minsoo;LEE, Jongyoul;CHOI, Heuijoo;YOO, MalGoBalGaeBitNaLa;JI, Sunghoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.233-242
    • /
    • 2018
  • To overcome the low mechanical strength and corrosion behavior of a carbon steel canister at high temperature condition of a deep borehole, SiC ceramics were studied as an alternative material for the disposal canister. In this paper, a design concept for a SiC canister, along with an outer stainless steel container, was proposed, and its manufacturing feasibility was tested by fabricating several 1/3 scale canisters. The proposed canister can contain one PWR assembly. The outer container was also prepared for the string formation of SiC canisters. Thermal conductivity was measured for the SiC canister. The canister had a good thermal conductivity of above $70W{\cdot}m^{-1}{\cdot}K^{-1}$ at $100^{\circ}C$. The structural stability was checked under KURT environment, and it was found that the SiC ceramics did not exhibit any change for the 3 year corrosion test at $70^{\circ}C$. Therefore, it was concluded that SiC ceramics could be a good alternative to carbon steel in application to deep borehole disposal canisters.