• Title/Summary/Keyword: Deep Space

Search Result 1,046, Processing Time 0.032 seconds

DEEP-South : Moving Object Detection Experiments

  • Oh, Young-Seok;Bae, Yeong-Ho;Kim, Myung-Jin;Roh, Dong-Goo;Jin, Ho;Moon, Hong-Kyu;Park, Jintae;Lee, Hee-Jae;Yim, Hong-Suh;Choi, Young-Jun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.75.4-76
    • /
    • 2016
  • DEEP-South (Deep Ecliptic patrol of the Southern sky) is one of the secondary science projects of KMTNet (Korea Microlensing Telescope Network). The objective of this project is twofold, the physical characterization and the discovery of small Solar System bodies, focused on NEOs (Near Earth objects). In order to achieve the goals, we are implementing a software package to detect and report moving objects in the $18k{\times}18k$ mosaic CCD images of KMTNet. In this paper, we present preliminary results of the moving object detection experiments using the prototype MODP (Moving Object Detection Program). We utilize multiple images that are being taken at three KMTNet sites, towards the same target fields (TFs) obtained at different epochs. This prototype package employs existing softwares such as SExtractor (Source-Extracto) and SCAMP (Software for Calibrating Astrometry and Photometry); SExtractor generates catalogs, while SCAMP conducts precision astrometric calibration, then MODP determines if a point source is moving. We evaluated the astrometric accuracy and efficiency of the current version of MODP. The plan for upgrading MODP will also be mentioned.

  • PDF

Quantitative Risk Assessment Method for Deep Placed Underground Spaces (대심도지하공간의 정량적위험성 평가기법)

  • Lee, Chang-wook
    • Journal of the Society of Disaster Information
    • /
    • v.6 no.1
    • /
    • pp.92-119
    • /
    • 2010
  • As the necessity to utilize deep-placed underground spaces is increasing, we have to seriously consider the safety problems arising from the U/G spaces which is a restricted environment. Due to the higher cost of land compensation for above ground area and environmental issues, the plan to utilize deep-placed U/G spaces is currently only being established for the construction of U/G road network and GTX. However it is also expected that the U/G spaces are to be used as a living space because of the growing desires to change the above ground areas into the environmentally green spaces. Accordingly it is necessary to protect the U/G environments which is vulnerable against desasters caused by fire, explosion, flooding, terrorism, electric power failure, etc. properly. We want to introduce the principles of the Quantitative Risk Assessment(QRA) method for preparedness against the desasters arising from U/G environments, and also want to introduce an example of QRA which was implemented for the GOTTHARD tunnel which is the longest one in Europe.

Learning Less Random to Learn Better in Deep Reinforcement Learning with Noisy Parameters

  • Kim, Chayoung
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.9 no.1
    • /
    • pp.127-134
    • /
    • 2019
  • In terms of deep Reinforcement Learning (RL), exploration can be worked stochastically in the action of a state space. On the other hands, exploitation can be done the proportion of well generalization behaviors. The balance of exploration and exploitation is extremely important for better results. The randomly selected action with ε-greedy for exploration has been regarded as a de facto method. There is an alternative method to add noise parameters into a neural network for richer exploration. However, it is not easy to predict or detect over-fitting with the stochastically exploration in the perturbed neural network. Moreover, the well-trained agents in RL do not necessarily prevent or detect over-fitting in the neural network. Therefore, we suggest a novel design of a deep RL by the balance of the exploration with drop-out to reduce over-fitting in the perturbed neural networks.

Deep Learning-based Interior Design Recognition (딥러닝 기반 실내 디자인 인식)

  • Wongyu Lee;Jihun Park;Jonghyuk Lee;Heechul Jung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.1
    • /
    • pp.47-55
    • /
    • 2024
  • We spend a lot of time in indoor space, and the space has a huge impact on our lives. Interior design plays a significant role to make an indoor space attractive and functional. However, it should consider a lot of complex elements such as color, pattern, and material etc. With the increasing demand for interior design, there is a growing need for technologies that analyze these design elements accurately and efficiently. To address this need, this study suggests a deep learning-based design analysis system. The proposed system consists of a semantic segmentation model that classifies spatial components and an image classification model that classifies attributes such as color, pattern, and material from the segmented components. Semantic segmentation model was trained using a dataset of 30000 personal indoor interior images collected for research, and during inference, the model separate the input image pixel into 34 categories. And experiments were conducted with various backbones in order to obtain the optimal performance of the deep learning model for the collected interior dataset. Finally, the model achieved good performance of 89.05% and 0.5768 in terms of accuracy and mean intersection over union (mIoU). In classification part convolutional neural network (CNN) model which has recorded high performance in other image recognition tasks was used. To improve the performance of the classification model we suggests an approach that how to handle data that has data imbalance and vulnerable to light intensity. Using our methods, we achieve satisfactory results in classifying interior design component attributes. In this paper, we propose indoor space design analysis system that automatically analyzes and classifies the attributes of indoor images using a deep learning-based model. This analysis system, used as a core module in the A.I interior recommendation service, can help users pursuing self-interior design to complete their designs more easily and efficiently.

Design and performance research of a mixed-flow submersible deep well pump

  • Zhang, Qihua;Xu, Yuanhui;Cao, Li;Shi, Weidong;Lu, Weigang
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.3
    • /
    • pp.256-264
    • /
    • 2016
  • To meet the demand of higher handling capacity, a mixed-flow submersible deep well pump was designed and tested. The main hydraulic components are made of plastics, which is free of erosion, light-weight, and environment-friendly. To simplify plastic molding process, and to improve productivity, an axial-radial guide vane was proposed. To clarify its effect on the performance, a radial guide vane and a space guide vane are developed as well. By comparison, the efficiency of the pump equipped with the axial-radial guide vane is higher than the radial guide vane and is lower than the space guide vane, and its high efficiency range is wide. The static pressure recovery of the axial guide vane is a bit lower than the space guide vane, but it is much larger than the radial guide vane. Taking the cost and molding complexity into consideration, the axial-radial guide vane is much economic, promoting its popularity for the moderate and high specific speed submersible deep well pumps.

Comparison Analysis of Deep Learning-based Image Compression Approaches (딥 러닝 기반 이미지 압축 기법의 성능 비교 분석)

  • Yong-Hwan Lee;Heung-Jun Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.129-133
    • /
    • 2023
  • Image compression is a fundamental technique in the field of digital image processing, which will help to decrease the storage space and to transmit the files efficiently. Recently many deep learning techniques have been proposed to promise results on image compression field. Since many image compression techniques have artifact problems, this paper has compared two deep learning approaches to verify their performance experimentally to solve the problems. One of the approaches is a deep autoencoder technique, and another is a deep convolutional neural network (CNN). For those results in the performance of peak signal-to-noise and root mean square error, this paper shows that deep autoencoder method has more advantages than deep CNN approach.

  • PDF