• Title/Summary/Keyword: Deep Soil

Search Result 695, Processing Time 0.036 seconds

PGA estimates for deep soils atop deep geological sediments -An example of Osijek, Croatia

  • Bulajic, Borko D.;Hadzima-Nyarko, Marijana;Pavic, Gordana
    • Geomechanics and Engineering
    • /
    • v.30 no.3
    • /
    • pp.233-246
    • /
    • 2022
  • In this study, the city of Osijek is used as a case study area for low to medium seismicity regions with deep soil over deep geological deposits to determine horizontal PGA values. For this reason, we propose new regional attenuation equations for PGA that can simultaneously capture the effects of deep geology and local soil conditions. A micro-zoning map for the city of Osijek is constructed using the derived empirical scaling equations and compared to all prior seismic hazard estimates for the same area. The findings suggest that the deep soil atop deep geological sediments results in PGA values that are only 6 percent larger than those reported at rock soil sites atop geological rocks. Given the rarity of ground motion records for deep soils atop deep geological layers around the world, we believe this case study is a start toward defining more reliable PGA estimates for similar areas.

STUDY ON THE DEEP LOOSENING TECHNIQUE OF SUGARCANE

  • Luo, Xiwen-;Haibo-Wen;Guofu-Huang
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.994-1002
    • /
    • 1993
  • Soil deep loosening technique can improve the soil structure and increase the air permeability and water permeability of soil. It can increase the yield of crops in a large scale, particularly the plants with deep root system. This paper introduced the study on the deep loosening technique of sugarcance in Jinpen Farm where the soil is heavy caly with high ground water table. The implement and method of deep loosing, the experiments and results are include in this paper. The experimental results showed that the yield of sugarcane increased more than 20% after deep loosing.

  • PDF

Effect of Deep Ploughing with a Spading Machine and an Excavator on Improvement of Physical Properties in the Highland Applied Saprolite

  • Zhang, Yongseon;Moon, Yong-Hee;Sonn, Yeon-Kyu;Jung, Kangho;Cho, Hye-Rae;Han, Kyeong-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.564-569
    • /
    • 2015
  • In highland crop fields, saprolite is piled up approximately every three years as deep much as 20 to 30 cm because farmers expect that adding new materials may improve productivity and mitigate hazards by continuous cultivation of a single crop. Piling saprolite, however, has been reported to induce poor soil drainage. Effects of deep ploughing with a spading machine and an excavator were studied in sites located in Daekwanryeong-myeon, Pyeongchang in which soil physical properties were deteriorated by piled saprolite. The soil made of parent material of Samgag series was piled up over surface soil of Haggog series naturally developed in the area. Carrot was cultivated in the field. Productivity and growth factors of carrot were compared among control and deep ploughing by a spading machine and an excavator. Effective soil depth extended to 60 cm or greater by 60 cm deep ploughing by an excavator or 50 cm deep ploughing by a spading machine. On the other hand, effective soil depth was within 50 cm at control plot. Productivity of carrot responded to amelioration of soil physical properties. The productivity was greater in deep ploughing treatments than that of control or 30 cm ploughing. It suggested that increased productivity by deep ploughing was mainly related to breaking plough pan which inhibited extension of rooting zone.

Assessment of Subsoil Compaction by Soil Texture on Field Scale

  • Cho, Hee-Rae;Jung, Kang-Ho;Zhang, Yong-Seon;Han, Kyung-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.628-633
    • /
    • 2015
  • It is necessary to assess soil physical properties and crop growth treated by compaction to establish the soil management standard. This study evaluated the bulk density, strength and crop growth after subsoil compaction for sandy loam and loam on the field in Suwon, Korea. The treatments were compaction and deep tillage. Sandy loam and loam were classified to coarse soil and fine soil, respectively, depending on clay contents. In coarse soil, bulk density of compacted plot was 8~17% greater than control and deep tilled plot. The root growth was worse in compacted plot compared with control. In fine soil, plow pan was not observed in deep tilled plot with 5~19% smaller bulk density than compacted plot and control. Deep tillage improved the crop growth. The soil physical properties by compaction were dependent on clay content and crop growth limit depended on the traffic driving.

Behavior of polymer columns in soft clayey soil: A preliminary study

  • Arasan, Seracettin;Akbulut, Rahim Kagan;Isik, Fatih;Bagherinia, Majid;Zaimoglu, Ahmet Sahin
    • Geomechanics and Engineering
    • /
    • v.10 no.1
    • /
    • pp.95-107
    • /
    • 2016
  • Deep soil mixing with cement and cement-lime mixtures has been widely used for decades to improve the strength of soils. In this study, small-scale laboratory model tests of polymer columns in soft clayey soil were conducted to evaluate the feasibility of using various polymeric compounds as binders in deep soil mixing. Floating and end bearing polymer columns were used to examine the load-settlement relationship of improved soft clayey soils for various area replacement ratios. The results indicate that polymer columns show good promise for use in deep mixing applications.

Effects on amplification of strong ground motion due to deep soils

  • Jakka, Ravi S.;Hussain, Md.;Sharma, M.L.
    • Geomechanics and Engineering
    • /
    • v.8 no.5
    • /
    • pp.663-674
    • /
    • 2015
  • Many seismically vulnerable regions in India and worldwide are located on deep soil deposits which extend to several hundred meters of depth. It has been well recognized that the earthquake shaking is altered by geological conditions at the location of building. As seismic waves propagates through uppermost layers of soil and rock, these layers serve as filter and they can increase the duration and amplitude of earthquake motion within narrow frequency bands. The amplification of these waves is largely controlled by mechanical properties of these layers, which are function of their stiffness and damping. Stiffness and damping are further influenced by soil type and thickness. In the current study, an attempt has been made to study the seismic site response of deep soils. Three hypothetical homogeneous soil models (e.g., soft soil, medium soil and hard soil) lying on bedrock are considered. Depth of half space is varied from 30 m to 2,000 m in this study. Controlled synthetic motions are used as input base motion. One dimensional equivalent linear ground response analyses are carried out using a computer package DEEPSOIL. Conventional approach of analysing up to 30 m depth has been found to be inadequate for deep soil sites. PGA values are observed to be higher for deeper soil profiles as compared to shallow soil profiles indicating that deeper soil profiles are more prone to liquefaction and other related seismic hazards under earthquake ground shaking. The study recommends to deal the deeper soil sections more carefully for estimating the amplification factors for seismic hazard assessment at the surface.

Analysis of Construction Condition and Environmental Effect of Deep Soil Mixing (심층혼합처리 공법의 시공조건 및 환경적 영향 분석)

  • Cho, Jin-Woo;Lee, Yong-Soo;Yu, Jun;Shin, Won-Jae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1155-1158
    • /
    • 2006
  • This paper presents a study on the construction condition and environmental effect of deep soil mixing. Construction condition means the difference in unconfined compressive strength with respect to the depth and location of samples. Environmental effect means alkalinity diffused from soil stabilizer. The experimental results indicate that the unconfined compressive strength vary with respect to the depth, and doesn't show consistency pattern. So, in field application we must decide a mixing ratio enough to satisfy the least unconfined compressive strength. The difference in unconfined compressive strength with respect to the location of samples is negligible. The generation of alkalinity from soil stabilizer is reduced by permeating in non-improved soil and it is expected that the diffusion of alkalinity has no environmental effect on soil and ground water.

  • PDF

Case Study of Ground Disturbance Characteristic due to Drilling Machine in Adjacent Deep Excavation (근접 깊은 굴착에서 천공장비에 의한 지반교란 특성 사례 연구)

  • 김성욱;한병원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.77-84
    • /
    • 2003
  • Deep excavations in the urban areas have been frequently going on in large scale. Soil-nailing and Earth-anchor supporting methods are generally used in deep excavation. These construction methods cause ground disturbances during drilling process, and damages of adjacent structures and ground due to the differential settlement throughout construction period, and unexpected behaviors of supporting system according to the characteristics of drilling machine and ground condition. This article introduces two actual examples of adjacent deep excavation for the construction of university buildings in granitic Seoul area. The important results of construction and measurements obtained using Crawler drilling machine for Soil-nailing and Earth-anchor supporting methods are summarized. And some suggestions are given to improve and develop the technique of design and construction in the deep excavation projects having similar ground condition and supporting method.

  • PDF

Laboratory analysis of loose sand mixed with construction waste material in deep soil mixing

  • Alnunu, Mahdi Z.;Nalbantoglu, Zalihe
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.559-571
    • /
    • 2022
  • Deep soil mixing, DSM technique has been widely used to improve the engineering properties of problematic soils. Due to growing urbanization and the industrial developments, disposal of brick dust poses a big problem and causes environmental problems. This study aims to use brick dust in DSM application in order to minimize the waste in brick industry and to evaluate its effect on the improvement of the geotechnical properties. Three different percentages of cement content: (10, 15 and 20%) were used in the formation of soil-cement mixture. Unlike the other studies in the literature, various percentages of waste brick dust: (10, 20 and 30%) were used as partial replacement of cement in soil-cement mixture. The results indicated that addition of waste brick dust into soil-cement mixture had positive effect on the inherent strength and stiffness of loose sand. Cement replaced by 20% of brick dust gave the best results and reduced the final setting time of cement and resulted in an increase in unconfined compressive strength, modulus of elasticity and resilient modulus of sand mixed with cement and brick dust. The findings were also supported by the microscopic images of the specimens with different percentages of waste brick dust and it was observed that waste brick dust caused an increase in the interlocking between the particles and resulted in an increase in soil strength. Using waste brick dust as a replacement material seems to be promising for improving the geotechnical properties of loose sand.

Understanding the Effects of Deep Fertilization on Upland Crop Cultivation and Ammonia Emissions using a Newly Developed Deep Fertilization Device (신개발 심층시비장치를 이용한 심층시비의 밭작물 재배 효과)

  • Sung-Chang Hong;Min-Wook Kim;Jin-Ho Kim;Seong-Jik Park
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.1
    • /
    • pp.28-34
    • /
    • 2023
  • Nitrogen fertilizers applied to agricultural lands for crop cultivation can be volatilized as ammonia. The released ammonia can catalyze the formation of ultrafine dust (particulate matter, PM2.5), classified as a short-lived climate change pollutant, in the atmosphere. Currently, one of the prominent methods for fertilizer application in agricultural lands is soil surface application, which comprises spraying the fertilizers onto the soil surface, followed by mixing the fertilizers with the soil. Owing to the low nitrogen absorption rate of crops, when nitrogen fertilizers are applied in this manner, they can be lost from land surfaces through volatilization. Therefore, investigating a new fertilization method to reduce ammonia emissions and increase the fertilizer utilization efficiency of crops is necessary. In this study, to develop a method for reducing ammonia emissions from nitrogen fertilizers applied to soil surfaces, deep fertilization was conducted using a newly developed deep fertilization device, and ammonia emissions from barley, garlic, and onion fields were examined. Conventional fertilization (surface application) and deep fertilization (soil depth of 25 cm) were conducted for analysis. The fertilization rate was 100% of the standard fertilization rate used for barley, and deep fertilization of N, P, and K fertilizers was implemented. Ammonia emissions were collected using a wind tunnel chamber, and quantified subsequently susing the indole-phenol blue method. Ammonia emissions released from the basal fertilizer application persisted for approximately 58 d, beginning from approximately 3 d after fertilization in conventional treatments; however, ammonia was not released from deep fertilization. Moreover, barley, garlic, and onion yields were higher in the deep fertilization treatment than in the conventional fertilization treatment. In conclusion, a new fertilization method was identified as an alternative to the current approach of spraying fertilizers on the soil surface. This new method, which involves injecting nitrogen fertilizers at a soil depth of 25 cm, has the potential to reduce ammonia emissions and increase the yields of barley, garlic, and onion.