• 제목/요약/키워드: Deep SORT Algorithm

검색결과 20건 처리시간 0.022초

Vehicle detection and tracking algorithm based on improved feature extraction

  • Xiaole Ge;Feng Zhou;Shuaiting Chen;Gan Gao;Rugang Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권9호
    • /
    • pp.2642-2664
    • /
    • 2024
  • In the process of modern traffic management, information technology has become an important part of intelligent traffic governance. Real-time monitoring can accurately and effectively track and record vehicles, which is of great significance to modern urban traffic management. Existing tracking algorithms are affected by the environment, viewpoint, etc., and often have problems such as false detection, imprecise anchor boxes, and ID switch. Based on the YOLOv5 algorithm, we improve the loss function, propose a new feature extraction module to obtain the receptive field at different scales, and do adaptive fusion with the SGE attention mechanism, so that it can effectively suppress the noise information during feature extraction. The trained model improves the mAP value by 5.7% on the public dataset UA-DETRAC without increasing the amount of calculations. Meanwhile, for vehicle feature recognition, we adaptively adjust the network structure of the DeepSort tracking algorithm. Finally, we tested the tracking algorithm on the public dataset and in a realistic scenario. The results show that the improved algorithm has an increase in the values of MOTA and MT etc., which generally improves the reliability of vehicle tracking.

A Review on Advanced Methodologies to Identify the Breast Cancer Classification using the Deep Learning Techniques

  • Bandaru, Satish Babu;Babu, G. Rama Mohan
    • International Journal of Computer Science & Network Security
    • /
    • 제22권4호
    • /
    • pp.420-426
    • /
    • 2022
  • Breast cancer is among the cancers that may be healed as the disease diagnosed at early times before it is distributed through all the areas of the body. The Automatic Analysis of Diagnostic Tests (AAT) is an automated assistance for physicians that can deliver reliable findings to analyze the critically endangered diseases. Deep learning, a family of machine learning methods, has grown at an astonishing pace in recent years. It is used to search and render diagnoses in fields from banking to medicine to machine learning. We attempt to create a deep learning algorithm that can reliably diagnose the breast cancer in the mammogram. We want the algorithm to identify it as cancer, or this image is not cancer, allowing use of a full testing dataset of either strong clinical annotations in training data or the cancer status only, in which a few images of either cancers or noncancer were annotated. Even with this technique, the photographs would be annotated with the condition; an optional portion of the annotated image will then act as the mark. The final stage of the suggested system doesn't need any based labels to be accessible during model training. Furthermore, the results of the review process suggest that deep learning approaches have surpassed the extent of the level of state-of-of-the-the-the-art in tumor identification, feature extraction, and classification. in these three ways, the paper explains why learning algorithms were applied: train the network from scratch, transplanting certain deep learning concepts and constraints into a network, and (another way) reducing the amount of parameters in the trained nets, are two functions that help expand the scope of the networks. Researchers in economically developing countries have applied deep learning imaging devices to cancer detection; on the other hand, cancer chances have gone through the roof in Africa. Convolutional Neural Network (CNN) is a sort of deep learning that can aid you with a variety of other activities, such as speech recognition, image recognition, and classification. To accomplish this goal in this article, we will use CNN to categorize and identify breast cancer photographs from the available databases from the US Centers for Disease Control and Prevention.

Dynamic characteristics monitoring of wind turbine blades based on improved YOLOv5 deep learning model

  • W.H. Zhao;W.R. Li;M.H. Yang;N. Hong;Y.F. Du
    • Smart Structures and Systems
    • /
    • 제31권5호
    • /
    • pp.469-483
    • /
    • 2023
  • The dynamic characteristics of wind turbine blades are usually monitored by contact sensors with the disadvantages of high cost, difficult installation, easy damage to the structure, and difficult signal transmission. In view of the above problems, based on computer vision technology and the improved YOLOv5 (You Only Look Once v5) deep learning model, a non-contact dynamic characteristic monitoring method for wind turbine blade is proposed. First, the original YOLOv5l model of the CSP (Cross Stage Partial) structure is improved by introducing the CSP2_2 structure, which reduce the number of residual components to better the network training speed. On this basis, combined with the Deep sort algorithm, the accuracy of structural displacement monitoring is mended. Secondly, for the disadvantage that the deep learning sample dataset is difficult to collect, the blender software is used to model the wind turbine structure with conditions, illuminations and other practical engineering similar environments changed. In addition, incorporated with the image expansion technology, a modeling-based dataset augmentation method is proposed. Finally, the feasibility of the proposed algorithm is verified by experiments followed by the analytical procedure about the influence of YOLOv5 models, lighting conditions and angles on the recognition results. The results show that the improved YOLOv5 deep learning model not only perform well compared with many other YOLOv5 models, but also has high accuracy in vibration monitoring in different environments. The method can accurately identify the dynamic characteristics of wind turbine blades, and therefore can provide a reference for evaluating the condition of wind turbine blades.

Stacked Autoencoder를 이용한 특징 추출 기반 Fuzzy k-Nearest Neighbors 패턴 분류기 설계 (Design of Fuzzy k-Nearest Neighbors Classifiers based on Feature Extraction by using Stacked Autoencoder)

  • 노석범;오성권
    • 전기학회논문지
    • /
    • 제64권1호
    • /
    • pp.113-120
    • /
    • 2015
  • In this paper, we propose a feature extraction method using the stacked autoencoders which consist of restricted Boltzmann machines. The stacked autoencoders is a sort of deep networks. Restricted Boltzmann machines (RBMs) are probabilistic graphical models that can be interpreted as stochastic neural networks. In terms of pattern classification problem, the feature extraction is a key issue. We use the stacked autoencoders networks to extract new features which have a good influence on the improvement of the classification performance. After feature extraction, fuzzy k-nearest neighbors algorithm is used for a classifier which classifies the new extracted data set. To evaluate the classification ability of the proposed pattern classifier, we make some experiments with several machine learning data sets.

DenseNet을 활용한 식물 잎 분류 방안 연구 (Classification Method of Plant Leaf using DenseNet)

  • 박용민;강수명;채지훈;이준재
    • 한국멀티미디어학회논문지
    • /
    • 제21권5호
    • /
    • pp.571-582
    • /
    • 2018
  • Recently, development of deep learning has shown better image classification result than human. According to recent research, a hidden layer of deep learning is deeper, and a preservation of extracted features shows good results. However, in the case of general images, the extracted features are clear and easy to sort. This study aims to classify plant leaf images. This plant leaf image has high similarity in each image. Since plant leaf images have high similarity not only between images of different species but also within the same species, classification accuracy is not increased by simply extending the hidden layer or connecting the layers. Therefore, in this paper, we tried to improve the hidden layer of the algorithm called DenseNet which shows the recent excellent classification results, and compare the results of several different modified layers. The proposed method makes it possible to classify plant leaf images collected in a natural environment more easily and accurately than conventional methods. This results in good classification of plant leaf image data including unnecessary noise obtained in a natural environment.

EDNN based prediction of strength and durability properties of HPC using fibres & copper slag

  • Gupta, Mohit;Raj, Ritu;Sahu, Anil Kumar
    • Advances in concrete construction
    • /
    • 제14권3호
    • /
    • pp.185-194
    • /
    • 2022
  • For producing cement and concrete, the construction field has been encouraged by the usage of industrial soil waste (or) secondary materials since it decreases the utilization of natural resources. Simultaneously, for ensuring the quality, the analyses of the strength along with durability properties of that sort of cement and concrete are required. The prediction of strength along with other properties of High-Performance Concrete (HPC) by optimization and machine learning algorithms are focused by already available research methods. However, an error and accuracy issue are possessed. Therefore, the Enhanced Deep Neural Network (EDNN) based strength along with durability prediction of HPC was utilized by this research method. Initially, the data is gathered in the proposed work. Then, the data's pre-processing is done by the elimination of missing data along with normalization. Next, from the pre-processed data, the features are extracted. Hence, the data input to the EDNN algorithm which predicts the strength along with durability properties of the specific mixing input designs. Using the Switched Multi-Objective Jellyfish Optimization (SMOJO) algorithm, the weight value is initialized in the EDNN. The Gaussian radial function is utilized as the activation function. The proposed EDNN's performance is examined with the already available algorithms in the experimental analysis. Based on the RMSE, MAE, MAPE, and R2 metrics, the performance of the proposed EDNN is compared to the existing DNN, CNN, ANN, and SVM methods. Further, according to the metrices, the proposed EDNN performs better. Moreover, the effectiveness of proposed EDNN is examined based on the accuracy, precision, recall, and F-Measure metrics. With the already-existing algorithms i.e., JO, GWO, PSO, and GA, the fitness for the proposed SMOJO algorithm is also examined. The proposed SMOJO algorithm achieves a higher fitness value than the already available algorithm.

Designing a smart safe transportation system within a university using object detection algorithm

  • Na Young Lee;Geon Lee;Min Seop Lee;Yun Jung Hong;In-Beom Yang;Jiyoung Woo
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권1호
    • /
    • pp.51-59
    • /
    • 2024
  • 교내 보행자 교통사고를 예방하고 안전한 환경을 조성하기 위해 교내 위험 구간을 설정하고, 해당 구역에서 차량 속도 측정 및 교차로 횡단보도에서의 차량과 보행자 상호작용을 실시간으로 감지하는 시스템을 설계하였다. YOLOv5s 모델과 Deep SORT 방법을 이용하여 구간 속도 측정 및 객체 추적을 수행하고, 횡단보도 구역에서는 YOLOv5s 객체 탐지 모델을 활용하여 보행자와 차량을 구분하는 조건별 출력 시스템을 개발하여 실시간으로 구동이 됨을 검증하였다. 이 시스템은 저렴한 비용으로 일반 스마트폰 카메라나 화상용 카메라를 활용하여 설치할 수 있으며, 대학 캠퍼스뿐만 아니라 비슷한 문제 지역에 도입하여 차량과 보행자의 안전을 위한 해결 방안으로 기대된다.

효율적인 양식 모니터링을 향하여: YOLOv7 및 SORT를 사용한 실시간 물고기 감지 및 추적을 위한 지상 기반 카메라 구현 (Towards Efficient Aquaculture Monitoring: Ground-Based Camera Implementation for Real-Time Fish Detection and Tracking with YOLOv7 and SORT)

  • 노태경;하상현;김기환;강영진;정석찬
    • 한국빅데이터학회지
    • /
    • 제8권2호
    • /
    • pp.73-82
    • /
    • 2023
  • 현재 수산업 종사자의 78%를 차지하고 있는 인력 고령화에 따른 노동력 부족 문제를 해결하기 위해 객체 검출 및 추적 알고리즘을 주요 내용으로 하는 스마트 양식 기술에 대한 연구가 활발히 진행되고 있다. 이러한 기술들은 어류의 크기 분석, 행동 패턴 예측 등의 작업이 가능하여 실시간 모니터링 및 자동화 시스템의 구축이 용이할 것으로 기대된다. 본 연구에서는 양식 시설 외부에 설치된 카메라로부터 수집된 영상 데이터를 기반으로 어류 검출 및 추적 알고리즘을 활용하였다. 수중 조건, 암모니아, pH 농도에 따른 카메라 부식 문제로 인한 높은 유지보수 비용 문제를 극복하는 것을 목표로 하였다. 어류 객체 검출을 위해 YOLOv7 모델을 활용한 실시간 모니터링 시스템의 성능을 분석하였고, 어류의 움직임을 추적하기 위해 SORT 알고리즘을 활용하였다. YOLOv7 훈련 결과 PR Curve 기반의 Recall과 Precision 값의 상충 관계를 밝혀내 조명에 의한 물줄기와 그림자의 오검출을 최소화하였음을 알 수 있다. 어류 추적을 위해 우리는 재식별화를 통해 효과적인 추적을 확인하였다. 이러한 연구 결과는 스마트 양식 산업의 운영 효율성을 높이고 양식 시설의 어류 관리 개선을 용이하게 할 것으로 기대된다.

딥러닝 기술을 이용한 영상에서 흡연행위 검출 (Detection of Smoking Behavior in Images Using Deep Learning Technology)

  • 김동준;최유진;박경민;박지현;이재문;황기태;정인환
    • 한국인터넷방송통신학회논문지
    • /
    • 제23권4호
    • /
    • pp.107-113
    • /
    • 2023
  • 본 논문은 인공지능 기술을 활용하여 영상에서 흡연 행위를 검출하는 방법을 제안한다. 흡연은 정적 현상이 아니라 행위에 해당하기 때문에 객체 탐지 기술에 행위를 탐지할 수 있는 자세 추정 기술을 접목하였다. 이미지에서 흡연자를 검출하기 위하여 흡연자 검출 학습 모델을 개발하였으며, 영상에서 흡연행위를 검출하기 위하여 흡연행위의 특성을 자세 추정 기술에 적용하였다. 객체 탐지를 위하여 YOLOv8을 사용하였으며, 자세 추정을 위하여 OpenPose를 이용하였다. 또한, 영상에 흡연자 및 비흡연자가 포함되어 있는 경우 사람들만 분리하는 방법도 적용하였다. 제안된 방법은 파이선으로 Google Colab NVIDEA Tesla T4 GPU를 사용구현 하였고, 테스트 결과 주어진 영상에서 흡연 행위를 완벽하게 검출함을 알 수 있었다.

계층적 군집화 기반 Re-ID를 활용한 객체별 행동 및 표정 검출용 영상 분석 시스템 (Video Analysis System for Action and Emotion Detection by Object with Hierarchical Clustering based Re-ID)

  • 이상현;양성훈;오승진;강진범
    • 지능정보연구
    • /
    • 제28권1호
    • /
    • pp.89-106
    • /
    • 2022
  • 최근 영상 데이터의 급증으로 이를 효과적으로 처리하기 위해 객체 탐지 및 추적, 행동 인식, 표정 인식, 재식별(Re-ID)과 같은 다양한 컴퓨터비전 기술에 대한 수요도 급증했다. 그러나 객체 탐지 및 추적 기술은 객체의 영상 촬영 장소 이탈과 재등장, 오클루전(Occlusion) 등과 같이 성능을 저하시키는 많은 어려움을 안고 있다. 이에 따라 객체 탐지 및 추적 모델을 근간으로 하는 행동 및 표정 인식 모델 또한 객체별 데이터 추출에 난항을 겪는다. 또한 다양한 모델을 활용한 딥러닝 아키텍처는 병목과 최적화 부족으로 성능 저하를 겪는다. 본 연구에서는 YOLOv5기반 DeepSORT 객체추적 모델, SlowFast 기반 행동 인식 모델, Torchreid 기반 재식별 모델, 그리고 AWS Rekognition의 표정 인식 모델을 활용한 영상 분석 시스템에 단일 연결 계층적 군집화(Single-linkage Hierarchical Clustering)를 활용한 재식별(Re-ID) 기법과 GPU의 메모리 스루풋(Throughput)을 극대화하는 처리 기법을 적용한 행동 및 표정 검출용 영상 분석 시스템을 제안한다. 본 연구에서 제안한 시스템은 간단한 메트릭을 사용하는 재식별 모델의 성능보다 높은 정확도와 실시간에 가까운 처리 성능을 가지며, 객체의 영상 촬영 장소 이탈과 재등장, 오클루전 등에 의한 추적 실패를 방지하고 영상 내 객체별 행동 및 표정 인식 결과를 동일 객체에 지속적으로 연동하여 영상을 효율적으로 분석할 수 있다.