• 제목/요약/키워드: Deep Residual Network

검색결과 110건 처리시간 0.022초

익명 네트워크 기반 블록체인 범죄 수사방안 연구 (A Study on the Crime Investigation of Anonymity-Driven Blockchain Forensics)

  • 한채림;김학경
    • 융합보안논문지
    • /
    • 제23권5호
    • /
    • pp.45-55
    • /
    • 2023
  • IT 기술의 발전으로 따른 디지털 기기 사용의 보편화와 함께, 익명 통신 기술의 규모 또한 기하급수적으로 증가하고 있다. 이러한 상황에서 특히, 다크 웹(Dark web)과 딥웹(Deep web) 등 익명성을 보장하는 보안 메신저가 디지털 범죄의 온상지가 되고 있다. 익명 네트워크를 이용한 범죄 행위는 사용 기기에 로컬 데이터를 거의 남기지 않아 행위 추적이 어렵다. 미국 연방형사소송규칙과 영국 수사권한법에서는 온라인 수색 관련 법 및 제도 도입을 통해 대응하고 있으나, 한국은 관련 법의 부재로 인하여 수사적 대응 또한 전무한 실정이다. 종래의 (해외에서 사용되는) 온라인 수색 기법은 프로세스가 종료되면 아티팩트(Artifact) 수집을 할 수 없고, 메모리에만 데이터를 저장하는 악성코드에 대응할 수 없으며, 민감 데이터 식별이 어렵고, 무결성이 침해된다는 기술적 한계가 확인된다. 본 논문에서는 기본권 침해를 최소화하는 방향에서 물리 메모리 데이터 분석을 통한 익명 네트워크 사용자 행위 추적 기반 블록체인 범죄 수사방식의 국내 도입 방안을 제안한다. 클로링을 통해 수집한 다크 웹 사이트 사용자의 행위를 추적해 물리 메모리의 잔존율과 77.2%의 합의 성공률을 확인함으로써 제안 방안의 수사로서의 실효성을 입증하고자 하였다.

단일 레이블 분류를 이용한 종단 간 화자 분할 시스템 성능 향상에 관한 연구 (A study on end-to-end speaker diarization system using single-label classification)

  • 정재희;김우일
    • 한국음향학회지
    • /
    • 제42권6호
    • /
    • pp.536-543
    • /
    • 2023
  • 다수의 화자가 존재하는 음성에서 "누가 언제 발화했는가?"에 대해 레이블링하는 화자 분할은 발화 중첩 구간에 대한 레이블링과 화자 분할 모델의 최적화를 위해 심층 신경망 기반의 종단 간 방법에 대해 연구되었다. 대부분 심층 신경망 기반의 종단 간 화자 분할 시스템은 음성의 각 프레임에서 발화한 모든 화자의 레이블들을 추정하는 다중 레이블 분류 문제로 분할을 수행한다. 다중 레이블 기반의 화자 분할 시스템은 임계값을 어떤 값으로 설정하는지에 따라 모델의 성능이 많이 달라진다. 본 논문에서는 임계값 없이 화자 분할을 수행할 수 있도록 단일 레이블 분류를 이용한 화자 분할 시스템에 대해 연구하였다. 제안하는 화자 분할 시스템은 기존의 화자 레이블을 단일 레이블 형태로 변환하여 모델의 출력으로부터 레이블을 바로 추정한다. 훈련에서는 화자 레이블 순열을 고려하기 위해 Permutation Invariant Training(PIT) 손실함수와 교차 엔트로피 손실함수를 조합하여 사용하였다. 또한 심층 구조를 갖는 모델의 효과적인 학습을 위해 화자 분할 모델에 잔차 연결 구조를 추가하였다. 실험은 Librispeech 데이터베이스를 이용해 화자 2명에 대한 시뮬레이션 잡음 데이터를 생성하여 사용하였다. Diarization Error Rate(DER) 성능 평가 지수를 이용해 제안한 방법과 베이스라인 모델을 비교 평가했을 때, 제안한 방법이 임계값 없이 분할이 가능하며, 약 20.7 %만큼 향상된 성능을 보였다.

Three-stream network with context convolution module for human-object interaction detection

  • Siadari, Thomhert S.;Han, Mikyong;Yoon, Hyunjin
    • ETRI Journal
    • /
    • 제42권2호
    • /
    • pp.230-238
    • /
    • 2020
  • Human-object interaction (HOI) detection is a popular computer vision task that detects interactions between humans and objects. This task can be useful in many applications that require a deeper understanding of semantic scenes. Current HOI detection networks typically consist of a feature extractor followed by detection layers comprising small filters (eg, 1 × 1 or 3 × 3). Although small filters can capture local spatial features with a few parameters, they fail to capture larger context information relevant for recognizing interactions between humans and distant objects owing to their small receptive regions. Hence, we herein propose a three-stream HOI detection network that employs a context convolution module (CCM) in each stream branch. The CCM can capture larger contexts from input feature maps by adopting combinations of large separable convolution layers and residual-based convolution layers without increasing the number of parameters by using fewer large separable filters. We evaluate our HOI detection method using two benchmark datasets, V-COCO and HICO-DET, and demonstrate its state-of-the-art performance.

Incremental Strategy-based Residual Regression Networks for Node Localization in Wireless Sensor Networks

  • Zou, Dongyao;Sun, Guohao;Li, Zhigang;Xi, Guangyong;Wang, Liping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권8호
    • /
    • pp.2627-2647
    • /
    • 2022
  • The easy scalability and low cost of range-free localization algorithms have led to their wide attention and application in node localization of wireless sensor networks. However, the existing range-free localization algorithms still have problems, such as large cumulative errors and poor localization performance. To solve these problems, an incremental strategy-based residual regression network is proposed for node localization in wireless sensor networks. The algorithm predicts the coordinates of the nodes to be solved by building a deep learning model and fine-tunes the prediction results by regression based on the intersection of the communication range between the predicted and real coordinates and the loss function, which improves the localization performance of the algorithm. Moreover, a correction scheme is proposed to correct the augmented data in the incremental strategy, which reduces the cumulative error generated during the algorithm localization. The analysis through simulation experiments demonstrates that our proposed algorithm has strong robustness and has obvious advantages in localization performance compared with other algorithms.

정규화 및 항등사상이 활성함수 성능에 미치는 영향 (The Effect of regularization and identity mapping on the performance of activation functions)

  • 류서현;윤재복
    • 한국산학기술학회논문지
    • /
    • 제18권10호
    • /
    • pp.75-80
    • /
    • 2017
  • 본 논문에서는 딥러닝에서 활용되는 정규화(regularization) 및 항등사상(identity mapping)이 활성함수(activation function) 성능에 미치는 영향에 대해 설명한다. 딥러닝에서 활성함수는 비선형 변환을 위해 사용된다. 초기에는 sigmoid 함수가 사용되었으며, 기울기가 사라지는 기존의 활성함수의 문제점을 극복하기 위해 ReLU(Rectified Linear Unit), LReLU(Leaky ReLU), PReLU(Parametric ReLU), ELU(Exponetial Linear Unit)이 개발되었다. 활성함수와의 연구와는 별도로 과적합(Overfitting)문제를 해결하기 위해, Dropout, 배치 정규화(Batch normalization) 등의 정규화 방법들이 개발되었다. 추가적으로 과적합을 피하기 위해, 일반적으로 기계학습 분야에서 사용되는 data augmentation 기법이 활용된다. 딥러닝 구조의 측면에서는 기존에 단순히 컨볼루션(Convolution) 층을 쌓아올리는 구조에서 항등사상을 추가하여 순방향, 역방향의 신호흐름을 개선한 residual network가 개발되었다. 위에서 언급된 활성함수들은 각기 서로 다른 특성을 가지고 있으나, 새로운 정규화 및 딥러닝 구조 연구에서는 가장 많이 사용되는 ReLU에 대해서만 검증되었다. 따라서 본 논문에서는 정규화 및 항등사상에 따른 활성함수의 성능에 대해 실험적으로 분석하였다. 분석을 통해, 정규화 및 항등사상 유무에 따른 활성함수 성능의 경향을 제시하였으며, 이는 활성함수 선택을 위한 교차검증 횟수를 줄일 수 있을 것이다.

Multi Label Deep Learning classification approach for False Data Injection Attacks in Smart Grid

  • Prasanna Srinivasan, V;Balasubadra, K;Saravanan, K;Arjun, V.S;Malarkodi, S
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권6호
    • /
    • pp.2168-2187
    • /
    • 2021
  • The smart grid replaces the traditional power structure with information inventiveness that contributes to a new physical structure. In such a field, malicious information injection can potentially lead to extreme results. Incorrect, FDI attacks will never be identified by typical residual techniques for false data identification. Most of the work on the detection of FDI attacks is based on the linearized power system model DC and does not detect attacks from the AC model. Also, the overwhelming majority of current FDIA recognition approaches focus on FDIA, whilst significant injection location data cannot be achieved. Building on the continuous developments in deep learning, we propose a Deep Learning based Locational Detection technique to continuously recognize the specific areas of FDIA. In the development area solver gap happiness is a False Data Detector (FDD) that incorporates a Convolutional Neural Network (CNN). The FDD is established enough to catch the fake information. As a multi-label classifier, the following CNN is utilized to evaluate the irregularity and cooccurrence dependency of power flow calculations due to the possible attacks. There are no earlier statistical assumptions in the architecture proposed, as they are "model-free." It is also "cost-accommodating" since it does not alter the current FDD framework and it is only several microseconds on a household computer during the identification procedure. We have shown that ANN-MLP, SVM-RBF, and CNN can conduct locational detection under different noise and attack circumstances through broad experience in IEEE 14, 30, 57, and 118 bus systems. Moreover, the multi-name classification method used successfully improves the precision of the present identification.

Triplet Loss 기반 딥러닝 모델을 통한 유사 아동 그림 선별 알고리즘 (A deep learning model based on triplet losses for a similar child drawing selection algorithm)

  • 문지유;김민종;이성옥;유용균
    • 한국산업정보학회논문지
    • /
    • 제27권1호
    • /
    • pp.1-9
    • /
    • 2022
  • 본 논문은 유사 아동 그림 선별 알고리즘 생성을 위한 Triplet Loss 기반 딥러닝 모델설계를 목적으로 한다. 아동 그림들 사이 유사성 측정을 위해서는 동일 클래스에 속하는 그림 간 특징 벡터의 거리는 가까워야 하고 다른 클래스 간 특징 벡터의 거리는 멀어져야 한다. 따라서, 본 연구에서는 클래스 수가 많아지는 경우에 이미지 유사성 측정에 이점을 지닌 Triplet Loss와 잔여 네트워크(ResNet)를 결합한 딥러닝 모델을 구축하여 유사 아동 그림 선별 알고리즘을 생성하였다. 결론적으로 본 모델을 활용한 유사 아동 그림 선별 알고리즘을 통해 대상 아동 그림과 다른 그림 간의 유사성을 측정하고 유사성이 높은 그림을 선별할 수 있다.

전처리 방법과 인공지능 모델 차이에 따른 대전과 부산의 태양광 발전량 예측성능 비교: 기상관측자료와 예보자료를 이용하여 (Comparison of Solar Power Generation Forecasting Performance in Daejeon and Busan Based on Preprocessing Methods and Artificial Intelligence Techniques: Using Meteorological Observation and Forecast Data)

  • 심채연;백경민;박현수;박종연
    • 대기
    • /
    • 제34권2호
    • /
    • pp.177-185
    • /
    • 2024
  • As increasing global interest in renewable energy due to the ongoing climate crisis, there is a growing need for efficient technologies to manage such resources. This study focuses on the predictive skill of daily solar power generation using weather observation and forecast data. Meteorological data from the Korea Meteorological Administration and solar power generation data from the Korea Power Exchange were utilized for the period from January 2017 to May 2023, considering both inland (Daejeon) and coastal (Busan) regions. Temperature, wind speed, relative humidity, and precipitation were selected as relevant meteorological variables for solar power prediction. All data was preprocessed by removing their systematic components to use only their residuals and the residual of solar data were further processed with weighted adjustments for homoscedasticity. Four models, MLR (Multiple Linear Regression), RF (Random Forest), DNN (Deep Neural Network), and RNN (Recurrent Neural Network), were employed for solar power prediction and their performances were evaluated based on predicted values utilizing observed meteorological data (used as a reference), 1-day-ahead forecast data (referred to as fore1), and 2-day-ahead forecast data (fore2). DNN-based prediction model exhibits superior performance in both regions, with RNN performing the least effectively. However, MLR and RF demonstrate competitive performance comparable to DNN. The disparities in the performance of the four different models are less pronounced than anticipated, underscoring the pivotal role of fitting models using residuals. This emphasizes that the utilized preprocessing approach, specifically leveraging residuals, is poised to play a crucial role in the future of solar power generation forecasting.

자동 암종 분류를 위한 딥러닝 영상처리 기법의 적용성 검토 연구 (A Feasibility Study on Application of a Deep Convolutional Neural Network for Automatic Rock Type Classification)

  • 추엔 팜;신휴성
    • 터널과지하공간
    • /
    • 제30권5호
    • /
    • pp.462-472
    • /
    • 2020
  • 암종 분류은 현장의 지질학적 또는 지반공학적 특성 파악을 위해 요구되는 매우 기본적인 행위이나 암석의 성인, 지역, 지질학적 이력 특성에 따라 동일 암종이라 하여도 매우 다양한 형태와 색 조성을 보이므로 깊은 지질학적 학식과 경험 없이는 쉬운 일은 아니다. 또한, 다른 여러 분야의 분류 작업에서 딥러닝 영상 처리 기법들이 성공적으로 적용되고 있으며, 지질학적 분류나 평가 분야에서도 딥러닝 기법의 적용에 대한 관심이 증대되고 있다. 따라서, 본 연구에서는 동일 암종임에도 다양한 형태와 색을 갖게 되는 실제 상황을 감안하여, 정확한 자동 암종 분류를 위한 딥러닝 기법의 적용 가능성에 대해 검토하였다. 이러한 기법은 향후에 현장 암종분류 작업을 수행하는 현장 기술자들을 지원할 수 있는 효과적인 툴로 활용 가능할 것이다. 본 연구에서 사용된 딥러닝 알고리즘은 매우 깊은 네트워크 구조로 객체 인식과 분류를 할 수 있는 것으로 잘 알려진 'ResNet' 계열의 딥러닝 알고리즘을 사용하였다. 적용된 딥러닝에서는 10개의 암종에 대한 다양한 암석 이미지들을 학습시켰으며, 학습 시키지 않은 암석 이미지들에 대하여 84% 수준 이상의 암종 분류 정확도를 보였다. 본 결과로 부터 다양한 성인과 지질학적 이력을 갖는 다양한 형태와 색의 암석들도 지질 전문가 수준으로 분류해 낼 수 있는 것으로 파악되었다. 나아가 다양한 지역과 현장에서 수집된 암석의 이미지와 지질학자들의 분류 결과가 학습데이터로 지속적으로 누적이 되어 재학습에 반영된다면 암종분류 성능은 자동으로 향상될 것이다.

Face Recognition Research Based on Multi-Layers Residual Unit CNN Model

  • Zhang, Ruyang;Lee, Eung-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제25권11호
    • /
    • pp.1582-1590
    • /
    • 2022
  • Due to the situation of the widespread of the coronavirus, which causes the problem of lack of face image data occluded by masks at recent time, in order to solve the related problems, this paper proposes a method to generate face images with masks using a combination of generative adversarial networks and spatial transformation networks based on CNN model. The system we proposed in this paper is based on the GAN, combined with multi-scale convolution kernels to extract features at different details of the human face images, and used Wasserstein divergence as the measure of the distance between real samples and synthetic samples in order to optimize Generator performance. Experiments show that the proposed method can effectively put masks on face images with high efficiency and fast reaction time and the synthesized human face images are pretty natural and real.