• 제목/요약/키워드: Deep Reinforcement Learning

검색결과 210건 처리시간 0.026초

커리큘럼 기반 심층 강화학습을 이용한 좁은 틈을 통과하는 무인기 군집 내비게이션 (Collective Navigation Through a Narrow Gap for a Swarm of UAVs Using Curriculum-Based Deep Reinforcement Learning)

  • 최명열;신우재;김민우;박휘성;유영빈;이민;오현동
    • 로봇학회논문지
    • /
    • 제19권1호
    • /
    • pp.117-129
    • /
    • 2024
  • This paper introduces collective navigation through a narrow gap using a curriculum-based deep reinforcement learning algorithm for a swarm of unmanned aerial vehicles (UAVs). Collective navigation in complex environments is essential for various applications such as search and rescue, environment monitoring and military tasks operations. Conventional methods, which are easily interpretable from an engineering perspective, divide the navigation tasks into mapping, planning, and control; however, they struggle with increased latency and unmodeled environmental factors. Recently, learning-based methods have addressed these problems by employing the end-to-end framework with neural networks. Nonetheless, most existing learning-based approaches face challenges in complex scenarios particularly for navigating through a narrow gap or when a leader or informed UAV is unavailable. Our approach uses the information of a certain number of nearest neighboring UAVs and incorporates a task-specific curriculum to reduce learning time and train a robust model. The effectiveness of the proposed algorithm is verified through an ablation study and quantitative metrics. Simulation results demonstrate that our approach outperforms existing methods.

Application of Deep Recurrent Q Network with Dueling Architecture for Optimal Sepsis Treatment Policy

  • Do, Thanh-Cong;Yang, Hyung Jeong;Ho, Ngoc-Huynh
    • 스마트미디어저널
    • /
    • 제10권2호
    • /
    • pp.48-54
    • /
    • 2021
  • Sepsis is one of the leading causes of mortality globally, and it costs billions of dollars annually. However, treating septic patients is currently highly challenging, and more research is needed into a general treatment method for sepsis. Therefore, in this work, we propose a reinforcement learning method for learning the optimal treatment strategies for septic patients. We model the patient physiological time series data as the input for a deep recurrent Q-network that learns reliable treatment policies. We evaluate our model using an off-policy evaluation method, and the experimental results indicate that it outperforms the physicians' policy, reducing patient mortality up to 3.04%. Thus, our model can be used as a tool to reduce patient mortality by supporting clinicians in making dynamic decisions.

Energy-Efficient DNN Processor on Embedded Systems for Spontaneous Human-Robot Interaction

  • Kim, Changhyeon;Yoo, Hoi-Jun
    • Journal of Semiconductor Engineering
    • /
    • 제2권2호
    • /
    • pp.130-135
    • /
    • 2021
  • Recently, deep neural networks (DNNs) are actively used for action control so that an autonomous system, such as the robot, can perform human-like behaviors and operations. Unlike recognition tasks, the real-time operation is essential in action control, and it is too slow to use remote learning on a server communicating through a network. New learning techniques, such as reinforcement learning (RL), are needed to determine and select the correct robot behavior locally. In this paper, we propose an energy-efficient DNN processor with a LUT-based processing engine and near-zero skipper. A CNN-based facial emotion recognition and an RNN-based emotional dialogue generation model is integrated for natural HRI system and tested with the proposed processor. It supports 1b to 16b variable weight bit precision with and 57.6% and 28.5% lower energy consumption than conventional MAC arithmetic units for 1b and 16b weight precision. Also, the near-zero skipper reduces 36% of MAC operation and consumes 28% lower energy consumption for facial emotion recognition tasks. Implemented in 65nm CMOS process, the proposed processor occupies 1784×1784 um2 areas and dissipates 0.28 mW and 34.4 mW at 1fps and 30fps facial emotion recognition tasks.

심층강화학습 기반 분산형 전력 시스템에서의 수요와 공급 예측을 통한 전력 거래시스템 (Power Trading System through the Prediction of Demand and Supply in Distributed Power System Based on Deep Reinforcement Learning)

  • 이승우;선준호;김수현;김진영
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권6호
    • /
    • pp.163-171
    • /
    • 2021
  • 본 논문은 분산형 전력 시스템에서 심층강화학습 기반의 전력 생산 환경 및 수요와 공급을 예측하며 자원 할당 알고리즘을 적용해 전력거래 시스템 연구의 최적화된 결과를 보여준다. 전력 거래시스템에 있어서 기존의 중앙집중식 전력 시스템에서 분산형 전력 시스템으로의 패러다임 변화에 맞추어 전력거래에 있어서 공동의 이익을 추구하며 장기적인 거래의 효율을 증가시키는 전력 거래시스템의 구축을 목표로 한다. 심층강화학습의 현실적인 에너지 모델과 환경을 만들고 학습을 시키기 위해 날씨와 매달의 패턴을 분석하여 데이터를 생성하며 시뮬레이션을 진행하는 데 있어서 가우시안 잡음을 추가해 에너지 시장 모델을 구축하였다. 모의실험 결과 제안된 전력 거래시스템은 서로 협조적이며 공동의 이익을 추구하며 장기적으로 이익을 증가시킨 것을 확인하였다.

스마트 TMD 제어를 위한 강화학습 알고리즘 성능 검토 (Performance Evaluation of Reinforcement Learning Algorithm for Control of Smart TMD)

  • 강주원;김현수
    • 한국공간구조학회논문집
    • /
    • 제21권2호
    • /
    • pp.41-48
    • /
    • 2021
  • A smart tuned mass damper (TMD) is widely studied for seismic response reduction of various structures. Control algorithm is the most important factor for control performance of a smart TMD. This study used a Deep Deterministic Policy Gradient (DDPG) among reinforcement learning techniques to develop a control algorithm for a smart TMD. A magnetorheological (MR) damper was used to make the smart TMD. A single mass model with the smart TMD was employed to make a reinforcement learning environment. Time history analysis simulations of the example structure subject to artificial seismic load were performed in the reinforcement learning process. Critic of policy network and actor of value network for DDPG agent were constructed. The action of DDPG agent was selected as the command voltage sent to the MR damper. Reward for the DDPG action was calculated by using displacement and velocity responses of the main mass. Groundhook control algorithm was used as a comparative control algorithm. After 10,000 episode training of the DDPG agent model with proper hyper-parameters, the semi-active control algorithm for control of seismic responses of the example structure with the smart TMD was developed. The simulation results presented that the developed DDPG model can provide effective control algorithms for smart TMD for reduction of seismic responses.

심층 강화 학습을 활용한 단일 강체 캐릭터의 모션 생성 (Motion Generation of a Single Rigid Body Character Using Deep Reinforcement Learning)

  • 안제원;구태홍;권태수
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제27권3호
    • /
    • pp.13-23
    • /
    • 2021
  • 본 논문에서는 단일 강체 모델(single rigid body)의 무게 중심(center of mass) 좌표계와 발의 위치를 활용하여 캐릭터의 동작을 생성하는 프레임워크를 제안한다. 이 프레임워크를 사용하면 기존의 전신 동작(full body)에 대한 정보를 사용할 때 보다 입력 상태 벡터(input state)의 차원을 줄임으로써 강화 학습의 속도를 개선할 수 있다. 또한 기존의 방법보다 학습 속도를 약 2 시간(약 68% 감소) 감소시켰음에도 기존의 방법 대비 최대 7.5배(약 1500 N)의 외력을 더 견딜 수 있는 더욱 견고한(robust) 모션을 생성할 수 있다. 본 논문에서는 이를 위해 무게 중심의 다음 좌표계를 구하기 위해 중심 역학(centroidal dynamics)을 활용하였고, 이에 필요한 매개 변수(parameter)들과 다음 발의 위치와 접촉력 계산에 필요한 매개 변수들을 구하는 정책(policy)의 학습을 심층 강화 학습(deep reinforcement learning)을 사용하여 구현하였다.

Analysis of trends in deep learning and reinforcement learning

  • Dong-In Choi;Chungsoo Lim
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권10호
    • /
    • pp.55-65
    • /
    • 2023
  • 본 논문에서는 딥러닝 및 강화학습 연구에 대해 KeyBERT(Keyword extraction with Bidirectional Encoder Representations of Transformers) 알고리즘 기반의 토픽 추출 및 토픽 출현 빈도 분석으로 급변하는 딥러닝 관련 연구 동향 분석을 파악하고자 한다. 딥러닝 알고리즘과 강화학습에 대한 논문초록을 크롤링하여 전반기와 후반기로 나누고, 전처리를 진행한 후 KeyBERT를 사용해 토픽을 추출한다. 그 후 토픽 출현 빈도로 동향 변화에 대해 분석한다. 분석된 알고리즘 모두 전반기와 후반기에 대한 뚜렷한 동향 변화가 나타났으며, 전반기에 비해 후반기에 들어 어느 주제에 대한 연구가 활발한지 확인할 수 있었다. 이는 KeyBERT를 활용한 토픽 추출 후 출현 빈도 분석으로 연구 동향변화 분석이 가능함을 보였으며, 타 분야의 연구 동향 분석에도 활용 가능할 것으로 예상한다. 또한 딥러닝의 동향을 제공함으로써 향후 딥러닝의 발전 방향에 대한 통찰력을 제공하며, 최근 주목 받는 연구 주제를 알 수 있게 하여 연구 주제 및 방법 선정에 직접적인 도움을 준다.

SDN에서 심층강화학습 기반 라우팅 알고리즘 (A Routing Algorithm based on Deep Reinforcement Learning in SDN)

  • 이성근
    • 한국전자통신학회논문지
    • /
    • 제16권6호
    • /
    • pp.1153-1160
    • /
    • 2021
  • 본 논문은 소프트웨어 정의 네트워크에서 심층강화학습을 활용하여 최적의 경로를 결정하는 라우팅 알고리즘을 제안한다. 학습을 위한 심층강화학습 모델은 DQN 을 기반으로 하고, 입력은 현재 네트워크 상태, 발신지, 목적지 노드이고, 출력은 발신지에서 목적지까지의 경로 리스트를 반환한다. 라우팅 작업을 이산 제어 문제로 정의하며, 라우팅을 위한 서비스 품질 파라미터는 지연, 대역폭, 손실률을 고려하였다. 라우팅 에이전트는 사용자의 서비스 품질 프로파일에 따라 적절한 서비스 등급으로 분류하고, SDN에서 수집된 현재 네트워크 상태로부터 각 링크 별로 제공할 수 있는 서비스 등급을 변환한다. 이러한 변환된 정보를 토대로 발신지에서부터 목적지까지 요구되는 서비스 등급을 만족시키는 경로를 선택하도록 학습을 한다. 시뮬레이션 결과는 제안한 알고리즘이 일정한 에피소드를 진행하게 되면 올바른 경로를 선택하게 되고, 학습이 성공적으로 수행됨을 나타냈다.

심층 강화학습 기술 동향 (Research Trends on Deep Reinforcement Learning)

  • 장수영;윤현진;박노삼;윤재관;손영성
    • 전자통신동향분석
    • /
    • 제34권4호
    • /
    • pp.1-14
    • /
    • 2019
  • Recent trends in deep reinforcement learning (DRL) have revealed the considerable improvements to DRL algorithms in terms of performance, learning stability, and computational efficiency. DRL also enables the scenarios that it covers (e.g., partial observability; cooperation, competition, coexistence, and communications among multiple agents; multi-task; decentralized intelligence) to be vastly expanded. These features have cultivated multi-agent reinforcement learning research. DRL is also expanding its applications from robotics to natural language processing and computer vision into a wide array of fields such as finance, healthcare, chemistry, and even art. In this report, we briefly summarize various DRL techniques and research directions.

스마트 제어알고리즘 개발을 위한 강화학습 리워드 설계 (Reward Design of Reinforcement Learning for Development of Smart Control Algorithm)

  • 김현수;윤기용
    • 한국공간구조학회논문집
    • /
    • 제22권2호
    • /
    • pp.39-46
    • /
    • 2022
  • Recently, machine learning is widely used to solve optimization problems in various engineering fields. In this study, machine learning is applied to development of a control algorithm for a smart control device for reduction of seismic responses. For this purpose, Deep Q-network (DQN) out of reinforcement learning algorithms was employed to develop control algorithm. A single degree of freedom (SDOF) structure with a smart tuned mass damper (TMD) was used as an example structure. A smart TMD system was composed of MR (magnetorheological) damper instead of passive damper. Reward design of reinforcement learning mainly affects the control performance of the smart TMD. Various hyper-parameters were investigated to optimize the control performance of DQN-based control algorithm. Usually, decrease of the time step for numerical simulation is desirable to increase the accuracy of simulation results. However, the numerical simulation results presented that decrease of the time step for reward calculation might decrease the control performance of DQN-based control algorithm. Therefore, a proper time step for reward calculation should be selected in a DQN training process.