• Title/Summary/Keyword: Deep Neural Network Technology

Search Result 705, Processing Time 0.025 seconds

Effects of CNN Backbone on Trajectory Prediction Models for Autonomous Vehicle

  • Seoyoung Lee;Hyogyeong Park;Yeonhwi You;Sungjung Yong;Il-Young Moon
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.4
    • /
    • pp.346-350
    • /
    • 2023
  • Trajectory prediction is an essential element for driving autonomous vehicles, and various trajectory prediction models have emerged with the development of deep learning technology. Convolutional neural network (CNN) is the most commonly used neural network architecture for extracting the features of visual images, and the latest models exhibit high performances. This study was conducted to identify an efficient CNN backbone model among the components of deep learning models for trajectory prediction. We changed the existing CNN backbone network of multiple-trajectory prediction models used as feature extractors to various state-of-the-art CNN models. The experiment was conducted using nuScenes, which is a dataset used for the development of autonomous vehicles. The results of each model were compared using frequently used evaluation metrics for trajectory prediction. Analyzing the impact of the backbone can improve the performance of the trajectory prediction task. Investigating the influence of the backbone on multiple deep learning models can be a future challenge.

Machine Learning Techniques for Diabetic Retinopathy Detection: A Review

  • Rachna Kumari;Sanjeev Kumar;Sunila Godara
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.67-76
    • /
    • 2024
  • Diabetic retinopathy is a threatening complication of diabetes, caused by damaged blood vessels of light sensitive areas of retina. DR leads to total or partial blindness if left untreated. DR does not give any symptoms at early stages so earlier detection of DR is a big challenge for proper treatment of diseases. With advancement of technology various computer-aided diagnostic programs using image processing and machine learning approaches are designed for early detection of DR so that proper treatment can be provided to the patients for preventing its harmful effects. Now a day machine learning techniques are widely applied for image processing. These techniques also provide amazing result in this field also. In this paper we discuss various machine learning and deep learning based techniques developed for automatic detection of Diabetic Retinopathy.

Crack detection based on ResNet with spatial attention

  • Yang, Qiaoning;Jiang, Si;Chen, Juan;Lin, Weiguo
    • Computers and Concrete
    • /
    • v.26 no.5
    • /
    • pp.411-420
    • /
    • 2020
  • Deep Convolution neural network (DCNN) has been widely used in the healthy maintenance of civil infrastructure. Using DCNN to improve crack detection performance has attracted many researchers' attention. In this paper, a light-weight spatial attention network module is proposed to strengthen the representation capability of ResNet and improve the crack detection performance. It utilizes attention mechanism to strengthen the interested objects in global receptive field of ResNet convolution layers. Global average spatial information over all channels are used to construct an attention scalar. The scalar is combined with adaptive weighted sigmoid function to activate the output of each channel's feature maps. Salient objects in feature maps are refined by the attention scalar. The proposed spatial attention module is stacked in ResNet50 to detect crack. Experiments results show that the proposed module can got significant performance improvement in crack detection.

Breast Cancer Images Classification using Convolution Neural Network

  • Mohammed Yahya Alzahrani
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.113-120
    • /
    • 2023
  • One of the most prevalent disease among women that leads to death is breast cancer. It can be diagnosed by classifying tumors. There are two different types of tumors i.e: malignant and benign tumors. Physicians need a reliable diagnosis procedure to distinguish between these tumors. However, generally it is very difficult to distinguish tumors even by the experts. Thus, automation of diagnostic system is needed for diagnosing tumors. This paper attempts to improve the accuracy of breast cancer detection by utilizing deep learning convolutional neural network (CNN). Experiments are conducted using Wisconsin Diagnostic Breast Cancer (WDBC) dataset. Compared to existing techniques, the used of CNN shows a better result and achieves 99.66%% in term of accuracy.

Deep learning in nickel-based superalloys solvus temperature simulation

  • Dmitry A., Tarasov;Andrey G., Tyagunov;Oleg B., Milder
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.5
    • /
    • pp.367-375
    • /
    • 2022
  • Modeling the properties of complex alloys such as nickel superalloys is an extremely challenging scientific and engineering task. The model should take into account a large number of uncorrelated factors, for many of which information may be missing or vague. The individual contribution of one or another chemical element out of a dozen possible ligants cannot be determined by traditional methods. Moreover, there are no general analytical models describing the influence of elements on the characteristics of alloys. Artificial neural networks are one of the few statistical modeling tools that can account for many implicit correlations and establish correspondences that cannot be identified by other more familiar mathematical methods. However, such networks require careful tuning to achieve high performance, which is time-consuming. Data preprocessing can make model training much easier and faster. This article focuses on combining physics-based deep network configuration and input data engineering to simulate the solvus temperature of nickel superalloys. The used deep artificial neural network shows good simulation results. Thus, this method of numerical simulation can be easily applied to such problems.

Improved Performance of Image Semantic Segmentation using NASNet (NASNet을 이용한 이미지 시맨틱 분할 성능 개선)

  • Kim, Hyoung Seok;Yoo, Kee-Youn;Kim, Lae Hyun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.274-282
    • /
    • 2019
  • In recent years, big data analysis has been expanded to include automatic control through reinforcement learning as well as prediction through modeling. Research on the utilization of image data is actively carried out in various industrial fields such as chemical, manufacturing, agriculture, and bio-industry. In this paper, we applied NASNet, which is an AutoML reinforced learning algorithm, to DeepU-Net neural network that modified U-Net to improve image semantic segmentation performance. We used BRATS2015 MRI data for performance verification. Simulation results show that DeepU-Net has more performance than the U-Net neural network. In order to improve the image segmentation performance, remove dropouts that are typically applied to neural networks, when the number of kernels and filters obtained through reinforcement learning in DeepU-Net was selected as a hyperparameter of neural network. The results show that the training accuracy is 0.5% and the verification accuracy is 0.3% better than DeepU-Net. The results of this study can be applied to various fields such as MRI brain imaging diagnosis, thermal imaging camera abnormality diagnosis, Nondestructive inspection diagnosis, chemical leakage monitoring, and monitoring forest fire through CCTV.

Road Surface Damage Detection based on Object Recognition using Fast R-CNN (Fast R-CNN을 이용한 객체 인식 기반의 도로 노면 파손 탐지 기법)

  • Shim, Seungbo;Chun, Chanjun;Ryu, Seung-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.2
    • /
    • pp.104-113
    • /
    • 2019
  • The road management institute needs lots of cost to repair road surface damage. These damages are inevitable due to natural factors and aging, but maintenance technologies for efficient repair of the broken road are needed. Various technologies have been developed and applied to cope with such a demand. Recently, maintenance technology for road surface damage repair is being developed using image information collected in the form of a black box installed in a vehicle. There are various methods to extract the damaged region, however, we will discuss the image recognition technology of the deep neural network structure that is actively studied recently. In this paper, we introduce a new neural network which can estimate the road damage and its location in the image by region-based convolution neural network algorithm. In order to develop the algorithm, about 600 images were collected through actual driving. Then, learning was carried out and compared with the existing model, we developed a neural network with 10.67% accuracy.

A hybrid deep neural network compression approach enabling edge intelligence for data anomaly detection in smart structural health monitoring systems

  • Tarutal Ghosh Mondal;Jau-Yu Chou;Yuguang Fu;Jianxiao Mao
    • Smart Structures and Systems
    • /
    • v.32 no.3
    • /
    • pp.179-193
    • /
    • 2023
  • This study explores an alternative to the existing centralized process for data anomaly detection in modern Internet of Things (IoT)-based structural health monitoring (SHM) systems. An edge intelligence framework is proposed for the early detection and classification of various data anomalies facilitating quality enhancement of acquired data before transmitting to a central system. State-of-the-art deep neural network pruning techniques are investigated and compared aiming to significantly reduce the network size so that it can run efficiently on resource-constrained edge devices such as wireless smart sensors. Further, depthwise separable convolution (DSC) is invoked, the integration of which with advanced structural pruning methods exhibited superior compression capability. Last but not least, quantization-aware training (QAT) is adopted for faster processing and lower memory and power consumption. The proposed edge intelligence framework will eventually lead to reduced network overload and latency. This will enable intelligent self-adaptation strategies to be employed to timely deal with a faulty sensor, minimizing the wasteful use of power, memory, and other resources in wireless smart sensors, increasing efficiency, and reducing maintenance costs for modern smart SHM systems. This study presents a theoretical foundation for the proposed framework, the validation of which through actual field trials is a scope for future work.

Dynamics-Based Location Prediction and Neural Network Fine-Tuning for Task Offloading in Vehicular Networks

  • Yuanguang Wu;Lusheng Wang;Caihong Kai;Min Peng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.12
    • /
    • pp.3416-3435
    • /
    • 2023
  • Task offloading in vehicular networks is hot topic in the development of autonomous driving. In these scenarios, due to the role of vehicles and pedestrians, task characteristics are changing constantly. The classical deep learning algorithm always uses a pre-trained neural network to optimize task offloading, which leads to system performance degradation. Therefore, this paper proposes a neural network fine-tuning task offloading algorithm, combining with location prediction for pedestrians and vehicles by the Payne model of fluid dynamics and the car-following model, respectively. After the locations are predicted, characteristics of tasks can be obtained and the neural network will be fine-tuned. Finally, the proposed algorithm continuously predicts task characteristics and fine-tunes a neural network to maintain high system performance and meet low delay requirements. From the simulation results, compared with other algorithms, the proposed algorithm still guarantees a lower task offloading delay, especially when congestion occurs.

Development for Estimation Model of Runway Visual Range using Deep Neural Network (심층신경망을 활용한 활주로 가시거리 예측 모델 개발)

  • Ku, SungKwan;Hong, SeokMin
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.5
    • /
    • pp.435-442
    • /
    • 2017
  • The runway visual range affected by fog and so on is one of the important indicators to determine whether aircraft can take off and land at the airport or not. In the case of airports where transportation airplanes are operated, major weather forecasts including the runway visual range for local area have been released and provided to aviation workers for recognizing that. This paper proposes a runway visual range estimation model with a deep neural network applied recently to various fields such as image processing, speech recognition, natural language processing, etc. It is developed and implemented for estimating a runway visual range of local airport with a deep neural network. It utilizes the past actual weather observation data of the applied airfield for constituting the learning of the neural network. It can show comparatively the accurate estimation result when it compares the results with the existing observation data. The proposed model can be used to generate weather information on the airfield for which no other forecasting function is available.