• Title/Summary/Keyword: Deep Neural Network Technology

Search Result 687, Processing Time 0.027 seconds

Improved Deep Learning Algorithm

  • Kim, Byung Joo
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.8 no.2
    • /
    • pp.119-127
    • /
    • 2018
  • Training a very large deep neural network can be painfully slow and prone to overfitting. Many researches have done for overcoming the problem. In this paper, a combination of early stopping and ADAM based deep neural network was presented. This form of deep network is useful for handling the big data because it automatically stop the training before overfitting occurs. Also generalization ability is better than pure deep neural network model.

Deep Neural Network-Based Beauty Product Recommender (심층신경망 기반의 뷰티제품 추천시스템)

  • Song, Hee Seok
    • Journal of Information Technology Applications and Management
    • /
    • v.26 no.6
    • /
    • pp.89-101
    • /
    • 2019
  • Many researchers have been focused on designing beauty product recommendation system for a long time because of increased need of customers for personalized and customized recommendation in beauty product domain. In addition, as the application of the deep neural network technique becomes active recently, various collaborative filtering techniques based on the deep neural network have been introduced. In this context, this study proposes a deep neural network model suitable for beauty product recommendation by applying Neural Collaborative Filtering and Generalized Matrix Factorization (NCF + GMF) to beauty product recommendation. This study also provides an implementation of web API system to commercialize the proposed recommendation model. The overall performance of the NCF + GMF model was the best when the beauty product recommendation problem was defined as the estimation rating score problem and the binary classification problem. The NCF + GMF model showed also high performance in the top N recommendation.

A Study on the Classification of Surface Defect Based on Deep Convolution Network and Transfer-learning (신경망과 전이학습 기반 표면 결함 분류에 관한 연구)

  • Kim, Sung Joo;Kim, Gyung Bum
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.1
    • /
    • pp.64-69
    • /
    • 2021
  • In this paper, a method for improving the defect classification performance in low contrast, ununiformity and featureless steel plate surfaces has been studied based on deep convolution neural network and transfer-learning neural network. The steel plate surface images have low contrast, ununiformity, and featureless, so that the contrast between defect and defect-free regions are not discriminated. These characteristics make it difficult to extract the feature of the surface defect image. A classifier based on a deep convolution neural network is constructed to extract features automatically for effective classification of images with these characteristics. As results of the experiment, AlexNet-based transfer-learning classifier showed excellent classification performance of 99.43% with less than 160 seconds of training time. The proposed classification system showed excellent classification performance for low contrast, ununiformity, and featureless surface images.

Comparative Analysis of PM10 Prediction Performance between Neural Network Models

  • Jung, Yong-Jin;Oh, Chang-Heon
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.4
    • /
    • pp.241-247
    • /
    • 2021
  • Particulate matter has emerged as a serious global problem, necessitating highly reliable information on the matter. Therefore, various algorithms have been used in studies to predict particulate matter. In this study, we compared the prediction performance of neural network models that have been actively studied for particulate matter prediction. Among the neural network algorithms, a deep neural network (DNN), a recurrent neural network, and long short-term memory were used to design the optimal prediction model using a hyper-parameter search. In the comparative analysis of the prediction performance of each model, the DNN model showed a lower root mean square error (RMSE) than the other algorithms in the performance comparison using the RMSE and the level of accuracy as metrics for evaluation. The stability of the recurrent neural network was slightly lower than that of the other algorithms, although the accuracy was higher.

Deep Structured Learning: Architectures and Applications

  • Lee, Soowook
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.262-265
    • /
    • 2018
  • Deep learning, a sub-field of machine learning changing the prospects of artificial intelligence (AI) because of its recent advancements and application in various field. Deep learning deals with algorithms inspired by the structure and function of the brain called artificial neural networks. This works reviews basic architecture and recent advancement of deep structured learning. It also describes contemporary applications of deep structured learning and its advantages over the treditional learning in artificial interlligence. This study is useful for the general readers and students who are in the early stage of deep learning studies.

Improving Wind Speed Forecasts Using Deep Neural Network

  • Hong, Seokmin;Ku, SungKwan
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.327-333
    • /
    • 2019
  • Wind speed data constitute important weather information for aircrafts flying at low altitudes, such as drones. Currently, the accuracy of low altitude wind predictions is much lower than that of high-altitude wind predictions. Deep neural networks are proposed in this study as a method to improve wind speed forecast information. Deep neural networks mimic the learning process of the interactions among neurons in the brain, and it is used in various fields, such as recognition of image, sound, and texts, image and natural language processing, and pattern recognition in time-series. In this study, the deep neural network model is constructed using the wind prediction values generated by the numerical model as an input to improve the wind speed forecasts. Using the ground wind speed forecast data collected at the Boseong Meteorological Observation Tower, wind speed forecast values obtained by the numerical model are compared with those obtained by the model proposed in this study for the verification of the validity and compatibility of the proposed model.

Comparative Study of Performance of Deep Learning Algorithms in Particulate Matter Concentration Prediction (미세먼지 농도 예측을 위한 딥러닝 알고리즘별 성능 비교)

  • Cho, Kyoung-Woo;Jung, Yong-jin;Oh, Chang-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.5
    • /
    • pp.409-414
    • /
    • 2021
  • The growing concerns on the emission of particulate matter has prompted a demand for highly reliable particulate matter forecasting. Currently, several studies on particulate matter prediction use various deep learning algorithms. In this study, we compared the predictive performances of typical neural networks used for particulate matter prediction. We used deep neural network(DNN), recurrent neural network, and long short-term memory algorithms to design an optimal predictive model on the basis of a hyperparameter search. The results of a comparative analysis of the predictive performances of the models indicate that the variation trend of the actual and predicted values generally showed a good performance. In the analysis based on the root mean square error and accuracy, the DNN-based prediction model showed a higher reliability for prediction errors compared with the other prediction models.

Text Classification on Social Network Platforms Based on Deep Learning Models

  • YA, Chen;Tan, Juan;Hoekyung, Jung
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.1
    • /
    • pp.9-16
    • /
    • 2023
  • The natural language on social network platforms has a certain front-to-back dependency in structure, and the direct conversion of Chinese text into a vector makes the dimensionality very high, thereby resulting in the low accuracy of existing text classification methods. To this end, this study establishes a deep learning model that combines a big data ultra-deep convolutional neural network (UDCNN) and long short-term memory network (LSTM). The deep structure of UDCNN is used to extract the features of text vector classification. The LSTM stores historical information to extract the context dependency of long texts, and word embedding is introduced to convert the text into low-dimensional vectors. Experiments are conducted on the social network platforms Sogou corpus and the University HowNet Chinese corpus. The research results show that compared with CNN + rand, LSTM, and other models, the neural network deep learning hybrid model can effectively improve the accuracy of text classification.

Sound event classification using deep neural network based transfer learning (깊은 신경망 기반의 전이학습을 이용한 사운드 이벤트 분류)

  • Lim, Hyungjun;Kim, Myung Jong;Kim, Hoirin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.2
    • /
    • pp.143-148
    • /
    • 2016
  • Deep neural network that effectively capture the characteristics of data has been widely used in various applications. However, the amount of sound database is often insufficient for learning the deep neural network properly, so resulting in overfitting problems. In this paper, we propose a transfer learning framework that can effectively train the deep neural network even with insufficient sound event data by employing rich speech or music data. A series of experimental results verify that proposed method performs significantly better than the baseline deep neural network that was trained only with small sound event data.

A Sound Interpolation Method Using Deep Neural Network for Virtual Reality Sound (가상현실 음향을 위한 심층신경망 기반 사운드 보간 기법)

  • Choi, Jaegyu;Choi, Seung Ho
    • Journal of Broadcast Engineering
    • /
    • v.24 no.2
    • /
    • pp.227-233
    • /
    • 2019
  • In this paper, we propose a deep neural network-based sound interpolation method for realizing virtual reality sound. Through this method, sound between two points is generated by using acoustic signals obtained from two points. Sound interpolation can be performed by statistical methods such as arithmetic mean or geometric mean, but this is insufficient to reflect actual nonlinear acoustic characteristics. In order to solve this problem, in this study, the sound interpolation is performed by training the deep neural network based on the acoustic signals of the two points and the target point, and the experimental results show that the deep neural network-based sound interpolation method is superior to the statistical methods.