• Title/Summary/Keyword: Deep Learning-based Object Detection

Search Result 404, Processing Time 0.036 seconds

Adversarial Attacks for Deep Learning-Based Infrared Object Detection (딥러닝 기반 적외선 객체 검출을 위한 적대적 공격 기술 연구)

  • Kim, Hoseong;Hyun, Jaeguk;Yoo, Hyunjung;Kim, Chunho;Jeon, Hyunho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.591-601
    • /
    • 2021
  • Recently, infrared object detection(IOD) has been extensively studied due to the rapid growth of deep neural networks(DNN). Adversarial attacks using imperceptible perturbation can dramatically deteriorate the performance of DNN. However, most adversarial attack works are focused on visible image recognition(VIR), and there are few methods for IOD. We propose deep learning-based adversarial attacks for IOD by expanding several state-of-the-art adversarial attacks for VIR. We effectively validate our claim through comprehensive experiments on two challenging IOD datasets, including FLIR and MSOD.

Study on Detection Technique for Coastal Debris by using Unmanned Aerial Vehicle Remote Sensing and Object Detection Algorithm based on Deep Learning (무인항공기 영상 및 딥러닝 기반 객체인식 알고리즘을 활용한 해안표착 폐기물 탐지 기법 연구)

  • Bak, Su-Ho;Kim, Na-Kyeong;Jeong, Min-Ji;Hwang, Do-Hyun;Enkhjargal, Unuzaya;Kim, Bo-Ram;Park, Mi-So;Yoon, Hong-Joo;Seo, Won-Chan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1209-1216
    • /
    • 2020
  • In this study, we propose a method for detecting coastal surface wastes using an UAV(Unmanned Aerial Vehicle) remote sensing method and an object detection algorithm based on deep learning. An object detection algorithm based on deep neural networks was proposed to detect coastal debris in aerial images. A deep neural network model was trained with image datasets of three classes: PET, Styrofoam, and plastics. And the detection accuracy of each class was compared with Darknet-53. Through this, it was possible to monitor the wastes landing on the shore by type through unmanned aerial vehicles. In the future, if the method proposed in this study is applied, a complete enumeration of the whole beach will be possible. It is believed that it can contribute to increase the efficiency of the marine environment monitoring field.

Availability Evaluation of Object Detection Based on Deep Learning Method by Using Multitemporal and Multisensor Data for Nuclear Activity Analysis (핵 활동 분석을 위한 다시기·다종 위성영상의 딥러닝 모델 기반 객체탐지의 활용성 평가)

  • Seong, Seon-kyeong;Choi, Ho-seong;Mo, Jun-sang;Choi, Jae-wan
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1083-1094
    • /
    • 2021
  • In order to monitor nuclear activity in inaccessible areas, it is necessary to establish a methodology to analyze changesin nuclear activity-related objects using high-resolution satellite images. However, traditional object detection and change detection techniques using satellite images have difficulties in applying detection results to various fields because effects of seasons and weather at the time of image acquisition. Therefore, in this paper, an object of interest was detected in a satellite image using a deep learning model, and object changes in the satellite image were analyzed based on object detection results. An initial training of the deep learning model was performed using an open dataset for object detection, and additional training dataset for the region of interest were generated and applied to transfer learning. After detecting objects by multitemporal and multisensory satellite images, we tried to detect changes in objects in the images by using them. In the experiments, it was confirmed that the object detection results of various satellite images can be directly used for change detection for nuclear activity-related monitoring in inaccessible areas.

Deep Learning-based Pothole Detection System (딥러닝을 이용한 포트홀 검출 시스템)

  • Hwang, Sung-jin;Hong, Seok-woo;Yoon, Jong-seo;Park, Heemin;Kim, Hyun-chul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.1
    • /
    • pp.88-93
    • /
    • 2021
  • The automotive industry is developing day by day. Among them, it is very important to prevent accidents while driving. However, despite the importance of developing automobile industry technology, accidents due to road defects increase every year, especially in the rainy season. To this end, we proposed a road defect detection system for road management by converging deep learning and raspberry pi, which show various possibilities. In this paper, we developed a system that visually displays through a map after analyzing the images captured by the Raspberry Pi and the route GPS. The deep learning model trained for this system achieved 96% accuracy. Through this system, it is expected to manage road defects efficiently at a low cost.

Vehicle Classification and Tracking based on Deep Learning (딥러닝 기반의 자동차 분류 및 추적 알고리즘)

  • Hyochang Ahn;Yong-Hwan Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.161-165
    • /
    • 2023
  • One of the difficult works in an autonomous driving system is detecting road lanes or objects in the road boundaries. Detecting and tracking a vehicle is able to play an important role on providing important information in the framework of advanced driver assistance systems such as identifying road traffic conditions and crime situations. This paper proposes a vehicle detection scheme based on deep learning to classify and tracking vehicles in a complex and diverse environment. We use the modified YOLO as the object detector and polynomial regression as object tracker in the driving video. With the experimental results, using YOLO model as deep learning model, it is possible to quickly and accurately perform robust vehicle tracking in various environments, compared to the traditional method.

  • PDF

Vehicle Detection in Dense Area Using UAV Aerial Images (무인 항공기를 이용한 밀집영역 자동차 탐지)

  • Seo, Chang-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.693-698
    • /
    • 2018
  • This paper proposes a vehicle detection method for parking areas using unmanned aerial vehicles (UAVs) and using YOLOv2, which is a recent, known, fast, object-detection real-time algorithm. The YOLOv2 convolutional network algorithm can calculate the probability of each class in an entire image with a one-pass evaluation, and can also predict the location of bounding boxes. It has the advantage of very fast, easy, and optimized-at-detection performance, because the object detection process has a single network. The sliding windows methods and region-based convolutional neural network series detection algorithms use a lot of region proposals and take too much calculation time for each class. So these algorithms have a disadvantage in real-time applications. This research uses the YOLOv2 algorithm to overcome the disadvantage that previous algorithms have in real-time processing problems. Using Darknet, OpenCV, and the Compute Unified Device Architecture as open sources for object detection. a deep learning server is used for the learning and detecting process with each car. In the experiment results, the algorithm could detect cars in a dense area using UAVs, and reduced overhead for object detection. It could be applied in real time.

Comparison of CNN Structures for Detection of Surface Defects (표면 결함 검출을 위한 CNN 구조의 비교)

  • Choi, Hakyoung;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1100-1104
    • /
    • 2017
  • A detector-based approach shows the limited performances for the defect inspections such as shallow fine cracks and indistinguishable defects from background. Deep learning technique is widely used for object recognition and it's applications to detect defects have been gradually attempted. Deep learning requires huge scale of learning data, but acquisition of data can be limited in some industrial application. The possibility of applying CNN which is one of the deep learning approaches for surface defect inspection is investigated for industrial parts whose detection difficulty is challenging and learning data is not sufficient. VOV is adopted for pre-processing and to obtain a resonable number of ROIs for a data augmentation. Then CNN method is applied for the classification. Three CNN networks, AlexNet, VGGNet, and mofified VGGNet are compared for experiments of defects detection.

Garbage Dumping Detection System using Articular Point Deep Learning (관절점 딥러닝을 이용한 쓰레기 무단 투기 적발 시스템)

  • MIN, Hye Won;LEE, Hyoung Gu
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.11
    • /
    • pp.1508-1517
    • /
    • 2021
  • In CCTV environments, a lot of learning image data is required to monitor illegal dumping of garbage with a typical image-based object detection using deep learning method. In this paper, we propose a system to monitor unauthorized dumping of garbage by learning the articular points of the person using only a small number of images without immediate use of the image for deep learning. In experiment, the proposed system showed 74.97% of garbage dumping detection performance with only a relatively small amount of image data in CCTV environments.

Augmented Reality Service Based on Object Pose Prediction Using PnP Algorithm

  • Kim, In-Seon;Jung, Tae-Won;Jung, Kye-Dong
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.295-301
    • /
    • 2021
  • Digital media technology is gradually developing with the development of convergence quaternary industrial technology and mobile devices. The combination of deep learning and augmented reality can provide more convenient and lively services through the interaction of 3D virtual images with the real world. We combine deep learning-based pose prediction with augmented reality technology. We predict the eight vertices of the bounding box of the object in the image. Using the predicted eight vertices(x,y), eight vertices(x,y,z) of 3D mesh, and the intrinsic parameter of the smartphone camera, we compute the external parameters of the camera through the PnP algorithm. We calculate the distance to the object and the degree of rotation of the object using the external parameter and apply to AR content. Our method provides services in a web environment, making it highly accessible to users and easy to maintain the system. As we provide augmented reality services using consumers' smartphone cameras, we can apply them to various business fields.

Construction of Database for Deep Learning-based Occlusion Area Detection in the Virtual Environment (가상 환경에서의 딥러닝 기반 폐색영역 검출을 위한 데이터베이스 구축)

  • Kim, Kyeong Su;Lee, Jae In;Gwak, Seok Woo;Kang, Won Yul;Shin, Dae Young;Hwang, Sung Ho
    • Journal of Drive and Control
    • /
    • v.19 no.3
    • /
    • pp.9-15
    • /
    • 2022
  • This paper proposes a method for constructing and verifying datasets used in deep learning technology, to prevent safety accidents in automated construction machinery or autonomous vehicles. Although open datasets for developing image recognition technologies are challenging to meet requirements desired by users, this study proposes the interface of virtual simulators to facilitate the creation of training datasets desired by users. The pixel-level training image dataset was verified by creating scenarios, including various road types and objects in a virtual environment. Detecting an object from an image may interfere with the accurate path determination due to occlusion areas covered by another object. Thus, we construct a database, for developing an occlusion area detection algorithm in a virtual environment. Additionally, we present the possibility of its use as a deep learning dataset to calculate a grid map, that enables path search considering occlusion areas. Custom datasets are built using the RDBMS system.