• Title/Summary/Keyword: Deep Learning-based Object Detection

Search Result 423, Processing Time 0.028 seconds

Experiment on Intermediate Feature Coding for Object Detection and Segmentation

  • Jeong, Min Hyuk;Jin, Hoe-Yong;Kim, Sang-Kyun;Lee, Heekyung;Choo, Hyon-Gon;Lim, Hanshin;Seo, Jeongil
    • Journal of Broadcast Engineering
    • /
    • v.25 no.7
    • /
    • pp.1081-1094
    • /
    • 2020
  • With the recent development of deep learning, most computer vision-related tasks are being solved with deep learning-based network technologies such as CNN and RNN. Computer vision tasks such as object detection or object segmentation use intermediate features extracted from the same backbone such as Resnet or FPN for training and inference for object detection and segmentation. In this paper, an experiment was conducted to find out the compression efficiency and the effect of encoding on task inference performance when the features extracted in the intermediate stage of CNN are encoded. The feature map that combines the features of 256 channels into one image and the original image were encoded in HEVC to compare and analyze the inference performance for object detection and segmentation. Since the intermediate feature map encodes the five levels of feature maps (P2 to P6), the image size and resolution are increased compared to the original image. However, when the degree of compression is weakened, the use of feature maps yields similar or better inference results to the inference performance of the original image.

Deep-Learning Based Real-time Fire Detection Using Object Tracking Algorithm

  • Park, Jonghyuk;Park, Dohyun;Hyun, Donghwan;Na, Youmin;Lee, Soo-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • In this paper, we propose a fire detection system based on CCTV images using an object tracking technology with YOLOv4 model capable of real-time object detection and a DeepSORT algorithm. The fire detection model was learned from 10800 pieces of learning data and verified through 1,000 separate test sets. Subsequently, the fire detection rate in a single image and fire detection maintenance performance in the image were increased by tracking the detected fire area through the DeepSORT algorithm. It is verified that a fire detection rate for one frame in video data or single image could be detected in real time within 0.1 second. In this paper, our AI fire detection system is more stable and faster than the existing fire accident detection system.

X-Ray Security Checkpoint System Using Storage Media Detection Method Based on Deep Learning for Information Security

  • Lee, Han-Sung;Kim Kang-San;Kim, Won-Chan;Woo, Tea-Kun;Jung, Se-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.10
    • /
    • pp.1433-1447
    • /
    • 2022
  • Recently, as the demand for physical security technology to prevent leakage of technical and business information of companies and public institutions increases, the high tech companies are operating X-ray security checkpoints at building entrances to protect their intellectual property and technology. X-ray security checkpoints are operated to detect cameras and storage media that may store or leak important technologies in the bags of people entering and leaving the building. In this study, we propose an X-ray security checkpoint system that automatically detects a storage medium in an X-ray image using a deep learning based object detection method. The proposed system consists of an edge computing unit and a cloud-computing unit. We employ the RetinaNet for automatic storage media detection in the X-ray security checkpoint images. The proposed approach achieved mAP of 95.92% on private dataset.

Simple Online Multiple Human Tracking based on LK Feature Tracker and Detection for Embedded Surveillance

  • Vu, Quang Dao;Nguyen, Thanh Binh;Chung, Sun-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.6
    • /
    • pp.893-910
    • /
    • 2017
  • In this paper, we propose a simple online multiple object (human) tracking method, LKDeep (Lucas-Kanade feature and Detection based Simple Online Multiple Object Tracker), which can run in fast online enough on CPU core only with acceptable tracking performance for embedded surveillance purpose. The proposed LKDeep is a pragmatic hybrid approach which tracks multiple objects (humans) mainly based on LK features but is compensated by detection on periodic times or on necessity times. Compared to other state-of-the-art multiple object tracking methods based on 'Tracking-By-Detection (TBD)' approach, the proposed LKDeep is faster since it does not have to detect object on every frame and it utilizes simple association rule, but it shows a good object tracking performance. Through experiments in comparison with other multiple object tracking (MOT) methods using the public DPM detector among online state-of-the-art MOT methods reported in MOT challenge [1], it is shown that the proposed simple online MOT method, LKDeep runs faster but with good tracking performance for surveillance purpose. It is further observed through single object tracking (SOT) visual tracker benchmark experiment [2] that LKDeep with an optimized deep learning detector can run in online fast with comparable tracking performance to other state-of-the-art SOT methods.

Object Detection Using Deep Learning Algorithm CNN

  • S. Sumahasan;Udaya Kumar Addanki;Navya Irlapati;Amulya Jonnala
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.129-134
    • /
    • 2024
  • Object Detection is an emerging technology in the field of Computer Vision and Image Processing that deals with detecting objects of a particular class in digital images. It has considered being one of the complicated and challenging tasks in computer vision. Earlier several machine learning-based approaches like SIFT (Scale-invariant feature transform) and HOG (Histogram of oriented gradients) are widely used to classify objects in an image. These approaches use the Support vector machine for classification. The biggest challenges with these approaches are that they are computationally intensive for use in real-time applications, and these methods do not work well with massive datasets. To overcome these challenges, we implemented a Deep Learning based approach Convolutional Neural Network (CNN) in this paper. The Proposed approach provides accurate results in detecting objects in an image by the area of object highlighted in a Bounding Box along with its accuracy.

Automatically Diagnosing Skull Fractures Using an Object Detection Method and Deep Learning Algorithm in Plain Radiography Images

  • Tae Seok, Jeong;Gi Taek, Yee; Kwang Gi, Kim;Young Jae, Kim;Sang Gu, Lee;Woo Kyung, Kim
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.1
    • /
    • pp.53-62
    • /
    • 2023
  • Objective : Deep learning is a machine learning approach based on artificial neural network training, and object detection algorithm using deep learning is used as the most powerful tool in image analysis. We analyzed and evaluated the diagnostic performance of a deep learning algorithm to identify skull fractures in plain radiographic images and investigated its clinical applicability. Methods : A total of 2026 plain radiographic images of the skull (fracture, 991; normal, 1035) were obtained from 741 patients. The RetinaNet architecture was used as a deep learning model. Precision, recall, and average precision were measured to evaluate the deep learning algorithm's diagnostic performance. Results : In ResNet-152, the average precision for intersection over union (IOU) 0.1, 0.3, and 0.5, were 0.7240, 0.6698, and 0.3687, respectively. When the intersection over union (IOU) and confidence threshold were 0.1, the precision was 0.7292, and the recall was 0.7650. When the IOU threshold was 0.1, and the confidence threshold was 0.6, the true and false rates were 82.9% and 17.1%, respectively. There were significant differences in the true/false and false-positive/false-negative ratios between the anterior-posterior, towne, and both lateral views (p=0.032 and p=0.003). Objects detected in false positives had vascular grooves and suture lines. In false negatives, the detection performance of the diastatic fractures, fractures crossing the suture line, and fractures around the vascular grooves and orbit was poor. Conclusion : The object detection algorithm applied with deep learning is expected to be a valuable tool in diagnosing skull fractures.

Deep Learning based Object Detector for Vehicle Recognition on Images Acquired with Fisheye Lens Cameras (어안렌즈 카메라로 획득한 영상에서 차량 인식을 위한 딥러닝 기반 객체 검출기)

  • Hieu, Tang Quang;Yeon, Sungho;Kim, Jaemin
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.2
    • /
    • pp.128-135
    • /
    • 2019
  • This paper presents a deep learning-based object detection method for recognizing vehicles in images acquired through cameras installed on ceiling of underground parking lot. First, we present an image enhancement method, which improves vehicle detection performance under dark lighting environment. Second, we present a new CNN-based multiscale classifiers for detecting vehicles in images acquired through cameras with fisheye lens. Experiments show that the presented vehicle detector has better performance than the conventional ones.

Grad-CAM based deep learning network for location detection of the main object (주 객체 위치 검출을 위한 Grad-CAM 기반의 딥러닝 네트워크)

  • Kim, Seon-Jin;Lee, Jong-Keun;Kwak, Nae-Jung;Ryu, Sung-Pil;Ahn, Jae-Hyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.2
    • /
    • pp.204-211
    • /
    • 2020
  • In this paper, we propose an optimal deep learning network architecture for main object location detection through weak supervised learning. The proposed network adds convolution blocks for improving the localization accuracy of the main object through weakly-supervised learning. The additional deep learning network consists of five additional blocks that add a composite product layer based on VGG-16. And the proposed network was trained by the method of weakly-supervised learning that does not require real location information for objects. In addition, Grad-CAM to compensate for the weakness of GAP in CAM, which is one of weak supervised learning methods, was used. The proposed network was tested through the CUB-200-2011 data set, we could obtain 50.13% in top-1 localization error. Also, the proposed network shows higher accuracy in detecting the main object than the existing method.

Contact Detection based on Relative Distance Prediction using Deep Learning-based Object Detection (딥러닝 기반의 객체 검출을 이용한 상대적 거리 예측 및 접촉 감지)

  • Hong, Seok-Mi;Sun, Kyunghee;Yoo, Hyun
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.1
    • /
    • pp.39-44
    • /
    • 2022
  • The purpose of this study is to extract the type, location, and absolute size of an object in an image using a deep learning algorithm, predict the relative distance between objects, and use this to detect contact between objects. To analyze the size ratio of objects, YOLO, a CNN-based object detection algorithm, is used. Through the YOLO algorithm, the absolute size and position of an object are extracted in the form of coordinates. The extraction result extracts the ratio between the size in the image and the actual size from the standard object-size list having the same object name and size stored in advance, and predicts the relative distance between the camera and the object in the image. Based on the predicted value, it detects whether the objects are in contact.

Development of Low-Cost Vision-based Eye Tracking Algorithm for Information Augmented Interactive System

  • Park, Seo-Jeon;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • v.7 no.1
    • /
    • pp.11-16
    • /
    • 2020
  • Deep Learning has become the most important technology in the field of artificial intelligence machine learning, with its high performance overwhelming existing methods in various applications. In this paper, an interactive window service based on object recognition technology is proposed. The main goal is to implement an object recognition technology using this deep learning technology to remove the existing eye tracking technology, which requires users to wear eye tracking devices themselves, and to implement an eye tracking technology that uses only usual cameras to track users' eye. We design an interactive system based on efficient eye detection and pupil tracking method that can verify the user's eye movement. To estimate the view-direction of user's eye, we initialize to make the reference (origin) coordinate. Then the view direction is estimated from the extracted eye pupils from the origin coordinate. Also, we propose a blink detection technique based on the eye apply ratio (EAR). With the extracted view direction and eye action, we provide some augmented information of interest without the existing complex and expensive eye-tracking systems with various service topics and situations. For verification, the user guiding service is implemented as a proto-type model with the school map to inform the location information of the desired location or building.