• Title/Summary/Keyword: Deep Learning System

Search Result 1,745, Processing Time 0.03 seconds

Broadcasting Software System for Interactive Service based on Deep Learning (차세대 딥러닝 인공지능을 이용한 양방향 서비스 방송 소프트웨어 시스템)

  • Yang, Geunseok;Shin, Yongwoo;Roh, Minchul;Kang, Seongho;Joo, Ingyu;Kwak, Jaechul;Ku, Jinwon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2017.06a
    • /
    • pp.26-28
    • /
    • 2017
  • 스마트폰 보유율과 모바일 이용 행태가 급변함에 따라 방송사에서는 양방향 서비스를 포함한 다양한 방송 서비스를 제공하려고 노력하고 있다. 양방향 서비스 방송에서 시청자가 보낸 문구를 실제 화면에 보여주기까지 PD 와 담당자들의 수작업이 필요하다. 하지만 하루 평균 약 7,200 건 (MBC 오늘아침 소통중계)의 양방향 서비스 관련 로그가 남게 되어, PD 가 일일이 판별하기에는 많은 노력이 따른다. 이러한 불필요한 노력을 줄이기 위해 본 논문에서는 감정 분석을 이용한 딥러닝 인공지능 기반 양방향 서비스 방송 소프트웨어 시스템을 제안한다. 첫째, 시청자들이 전송한 의견, 건의사항, 내용 등을 전처리 과정을 진행한다. 둘째, 감정 사전을 이용해 전처리 된 단어와 비교하여 시청자가 보낸 문구의 감정 점수를 계산한다. 셋째, 과거 실제 방송에 송출된 시청자 문구를 감정 점수와 함께 딥러닝을 이용하여 훈련시킨다. 본 논문의 성능을 평가하기 위해, 2017 년 생방송 오늘아침 소통중계에 사례연구를 진행하였고 효율성을 보였다. 앞으로 이러한 양방향 서비스 방송 소프트웨어 시스템 도입으로, PD 가 방송 제작에 더욱 집중 할 수 있도록 차별화된 방송을 준비하는데 크게 기여할 것이라 기대한다.

  • PDF

Korean Semantic Role Labeling using Stacked Bidirectional LSTM-CRFs (Stacked Bidirectional LSTM-CRFs를 이용한 한국어 의미역 결정)

  • Bae, Jangseong;Lee, Changki
    • Journal of KIISE
    • /
    • v.44 no.1
    • /
    • pp.36-43
    • /
    • 2017
  • Syntactic information represents the dependency relation between predicates and arguments, and it is helpful for improving the performance of Semantic Role Labeling systems. However, syntax analysis can cause computational overhead and inherit incorrect syntactic information. To solve this problem, we exclude syntactic information and use only morpheme information to construct Semantic Role Labeling systems. In this study, we propose an end-to-end SRL system that only uses morpheme information with Stacked Bidirectional LSTM-CRFs model by extending the LSTM RNN that is suitable for sequence labeling problem. Our experimental results show that our proposed model has better performance, as compare to other models.

A Study on the Recognition of Face Based on CNN Algorithms (CNN 알고리즘을 기반한 얼굴인식에 관한 연구)

  • Son, Da-Yeon;Lee, Kwang-Keun
    • Korean Journal of Artificial Intelligence
    • /
    • v.5 no.2
    • /
    • pp.15-25
    • /
    • 2017
  • Recently, technologies are being developed to recognize and authenticate users using bioinformatics to solve information security issues. Biometric information includes face, fingerprint, iris, voice, and vein. Among them, face recognition technology occupies a large part. Face recognition technology is applied in various fields. For example, it can be used for identity verification, such as a personal identification card, passport, credit card, security system, and personnel data. In addition, it can be used for security, including crime suspect search, unsafe zone monitoring, vehicle tracking crime.In this thesis, we conducted a study to recognize faces by detecting the areas of the face through a computer webcam. The purpose of this study was to contribute to the improvement in the accuracy of Recognition of Face Based on CNN Algorithms. For this purpose, We used data files provided by github to build a face recognition model. We also created data using CNN algorithms, which are widely used for image recognition. Various photos were learned by CNN algorithm. The study found that the accuracy of face recognition based on CNN algorithms was 77%. Based on the results of the study, We carried out recognition of the face according to the distance. Research findings may be useful if face recognition is required in a variety of situations. Research based on this study is also expected to improve the accuracy of face recognition.

Image Recognition and Clustering for Virtual Reality based on Cognitive Rehabilitation Contents (가상현실 기반 인지재활 콘텐츠를 위한 영상 인식 및 군집화)

  • Choi, KwonTaeg
    • Journal of Digital Contents Society
    • /
    • v.18 no.7
    • /
    • pp.1249-1257
    • /
    • 2017
  • Due to the 4th industrial revolution and an aged society, many studies are being conducted to apply virtual reality to medical field. Research on dementia is especially active. This paper proposes virtual reality based on cognitive rehabilitation contents using image recognition and clustering method to improve cognitive and physical disabilities caused by dementia. Unlike the existing cognitive rehabilitation system, this paper uses travel photos that reflect the memories of the subjects to be treated. In order to generate automated cognitive rehabilitation contents, we extract face information, food pictures, place information, and time information from photographs, and normalization is performed for clustering. And we present scenarios that can be used as cognitive rehabilitation contents using travel photos in virtual reality space.

Design and Implementation of Mobile Communication System for Hearing- impaired Person (청각 장애인을 위한 모바일 통화 시스템 설계 및 구현)

  • Yun, Dong-Hee;Kim, Young-Ung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.5
    • /
    • pp.111-116
    • /
    • 2016
  • According to the Ministry of Science, ICT and Future Planning's survey of information gap, smartphone retention rate of disabled people stayed in one-third of non-disabled people, the situation is significantly less access to information for people with disabilities than non-disabled people. In this paper, we develop an application, CallHelper, that helps to be more convenient to use mobile voice calls to the auditory disabled people. CallHelper runs automatically when a call comes in, translates caller's voice to text output on the mobile screen, and displays the emotion reasoning from the caller's voice to visualize emoticons. It also saves voice, translated text, and emotion data that can be played back.

Fault Diagnosis of Induction Motor using Linear Predictive Coding and Deep Neural Network (LPC와 DNN을 결합한 유도전동기 고장진단)

  • Ryu, Jin Won;Park, Min Su;Kim, Nam Kyu;Chong, Ui Pil;Lee, Jung Chul
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.11
    • /
    • pp.1811-1819
    • /
    • 2017
  • As the induction motor is the core production equipment of the industry, it is necessary to construct a fault prediction and diagnosis system through continuous monitoring. Many researches have been conducted on motor fault diagnosis algorithm based on signal processing techniques using Fourier transform, neural networks, and fuzzy inference techniques. In this paper, we propose a fault diagnosis method of induction motor using LPC and DNN. To evaluate the performance of the proposed method, the fault diagnosis was carried out using the vibration data of the induction motor in steady state and simulated various fault conditions. Experimental results show that the learning time of our proposed method and the conventional spectrum+DNN method is 139 seconds and 974 seconds each executed on the experimental PC, and our method reduces execution time by 1/8 compared with conventional method. And the success rate of the proposed method is 98.08%, which is similar to 99.54% of the conventional method.

CNN-based Skip-Gram Method for Improving Classification Accuracy of Chinese Text

  • Xu, Wenhua;Huang, Hao;Zhang, Jie;Gu, Hao;Yang, Jie;Gui, Guan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.6080-6096
    • /
    • 2019
  • Text classification is one of the fundamental techniques in natural language processing. Numerous studies are based on text classification, such as news subject classification, question answering system classification, and movie review classification. Traditional text classification methods are used to extract features and then classify them. However, traditional methods are too complex to operate, and their accuracy is not sufficiently high. Recently, convolutional neural network (CNN) based one-hot method has been proposed in text classification to solve this problem. In this paper, we propose an improved method using CNN based skip-gram method for Chinese text classification and it conducts in Sogou news corpus. Experimental results indicate that CNN with the skip-gram model performs more efficiently than CNN-based one-hot method.

Deep learning-based voice recognition product purchase system for efficient vehicle environment (효율적인 차량 환경을 위한 딥 러닝 기반의 음성인식 상품 구매 시스템)

  • Kwon, Byung Wook;Kang, Won Min;Park, Jong Hyuk
    • Annual Conference of KIPS
    • /
    • 2017.11a
    • /
    • pp.330-332
    • /
    • 2017
  • 최근 차량사고는 운전자의 운전 행동이 많은 비중을 차지하며 행동이 올바르지 못했을 경우 주의가 분산되어 사고가 발생하고 있다. 자동차 업계에서는 자율주행 기술의 출현으로 운전자의 운전환경이 변화되고 있다. 차량 서비스들은 차량에 부착된 센서들을 이용한 다양한 차량 서비스가 개발되고 있으며 차량 서비스는 도로주변 환경과 운전자의 안전에 집중된 서비스가 대부분이다. 하지만 차량에 부착된 센서들의 성능문제로 인한 기능적 문제점으로 상용화가 늦어지고 있다. 본 논문에서는 사용자에게 효율적인 차량 서비스를 제공하기 위해 사용자의 음성을 활용한 상품구매 시스템을 제안한다. 본 시스템은 딥 러닝 기술이 적용된 DB를 통해 사용자의 음성데이터 분류를 통해 상품을 검색 및 구매할 수 있는 시스템이다. 제안된 시스템은 음성인식을 활용하여 별도의 과정 없이 간편하게 상품을 구매할 수 있으며, 사고의 위험으로부터 벗어날 수 있다.

Thread Distribution Method of GP-GPU for Accelerating Parallel Algorithms (병렬 알고리즘의 가속화를 위한 GP-GPU의 Thread할당 기법)

  • Lee, Kwan-Ho;Kim, Chi-Yong
    • Journal of IKEEE
    • /
    • v.21 no.1
    • /
    • pp.92-95
    • /
    • 2017
  • In this paper, we proposed a way to improve function of small scale GP-GPU. Instead of using superscalar which increase scheduling-complexity, we suggested the application of simple core to maximize GP-GPU performance. Our studies also demonstrated that simplified Stream Processor is one of the way to achieve functional improvement in GP-GPU. In addition, we found that developing of optimal thread-assigning method in Warp Scheduler for specific application improves functional performance of GP-GPU. For examination of GP-GPU functional performance, we suggested the thread-assigning way which coordinated with Deep-Learning system; a part of Neural Network. As a result, we found that functional index in algorithm of Neural Network was increased to 90%, 98% compared with Intel CPU and ARM cortex-A15 4 core respectively.

An effective license plate recognition system using deep learning technology (딥러닝 기술을 활용한 효과적인 차량 번호판 인식 시스템)

  • Jang, Sung-su;Jeong, Hyeok-june;Eun, Ae-cheoun;Ha, Young-guk
    • Annual Conference of KIPS
    • /
    • 2018.10a
    • /
    • pp.733-735
    • /
    • 2018
  • 최근의 차량 주차관리 시설, 출입통제가 필요한 장소 그리고 도로 방범카메라를 통한 단속 등 다양한 곳에서 차량 번호판 자동 인식 기술들이 활용되고 있다. 하지만 현재 사용되고 있는 LPR(License Plate Recognition) 시스템에는 많은 장비와 비용이 들어간다는 큰 단점이 존재한다. 본 논문에서는 하나의 컴퓨터와 최소의 카메라를 가지고 할 수 있는 기계학습을 통한 영상처리를 제안하려 한다. 먼저 딥러닝 프레임워크 중 하나인 YOLO(You Only Look Once) [4]를 활용하여 자동차의 번호판 부분의 영역을 검출하고 Grayscale를 통해 햇빛 또는 조명 등의 영향을 감소시켜 번호판의 특징을 보존시킨다. 전처리 작업이 끝난 후 번호판에서 숫자를 인식 하는 부분에서는 k-NN(k-Nearest Neighbor) 알고리즘을 사용하였으며 한글 문자 인식부분은 Template Matching을 이용하였다. 제안한 알고리즘을 사용하여 기존 LPR 시스템에서 획득한 차량이미지를 대상으로 시뮬레이션 한 결과 좋은 결과를 얻을 수 있어 향후 연구 방향의 시스템 확장성의 가능성을 발견할 수 있었다.