• Title/Summary/Keyword: Deep Learning System

Search Result 1,745, Processing Time 0.029 seconds

Indoor Positioning System using Geomagnetic Field with Recurrent Neural Network Model (순환신경망을 이용한 자기장 기반 실내측위시스템)

  • Bae, Han Jun;Choi, Lynn;Park, Byung Joon
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.14 no.6
    • /
    • pp.57-65
    • /
    • 2018
  • Conventional RF signal-based indoor localization techniques such as BLE or Wi-Fi based fingerprinting method show considerable localization errors even in small-scale indoor environments due to unstable received signal strength(RSS) of RF signals. Therefore, it is difficult to apply the existing RF-based fingerprinting techniques to large-scale indoor environments such as airports and department stores. In this paper, instead of RF signal we use the geomagnetic sensor signal for indoor localization, whose signal strength is more stable than RF RSS. Although similar geomagnetic field values exist in indoor space, an object movement would experience a unique sequence of the geomagnetic field signals as the movement continues. We use a deep neural network model called the recurrent neural network (RNN), which is effective in recognizing time-varying sequences of sensor data, to track the user's location and movement path. To evaluate the performance of the proposed geomagnetic field based indoor positioning system (IPS), we constructed a magnetic field map for a campus testbed of about $94m{\times}26$ dimension and trained RNN using various potential movement paths and their location data extracted from the magnetic field map. By adjusting various hyperparameters, we could achieve an average localization error of 1.20 meters in the testbed.

Training a semantic segmentation model for cracks in the concrete lining of tunnel (터널 콘크리트 라이닝 균열 분석을 위한 의미론적 분할 모델 학습)

  • Ham, Sangwoo;Bae, Soohyeon;Kim, Hwiyoung;Lee, Impyeong;Lee, Gyu-Phil;Kim, Donggyou
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.549-558
    • /
    • 2021
  • In order to keep infrastructures such as tunnels and underground facilities safe, cracks of concrete lining in tunnel should be detected by regular inspections. Since regular inspections are accomplished through manual efforts using maintenance lift vehicles, it brings about traffic jam, exposes works to dangerous circumstances, and deteriorates consistency of crack inspection data. This study aims to provide methodology to automatically extract cracks from tunnel concrete lining images generated by the existing tunnel image acquisition system. Specifically, we train a deep learning based semantic segmentation model with open dataset, and evaluate its performance with the dataset from the existing tunnel image acquisition system. In particular, we compare the model performance in case of using all of a public dataset, subset of the public dataset which are related to tunnel surfaces, and the tunnel-related subset with negative examples. As a result, the model trained using the tunnel-related subset with negative examples reached the best performance. In the future, we expect that this research can be used for planning efficient model training strategy for crack detection.

Detection and Classification of Leaf Diseases for Phenomics System (피노믹스 시스템을 위한 식물 잎의 질병 검출 및 분류)

  • Gwan Ik, Park;Kyu Dong, Sim;Min Su, Kyeon;Sang Hwa, Lee;Jeong Hyun, Baek;Jong-Il, Park
    • Journal of Broadcast Engineering
    • /
    • v.27 no.6
    • /
    • pp.923-935
    • /
    • 2022
  • This paper deals with detection and classification of leaf diseases for phenomics systems. As the smart farm systems of plants are increased, It is important to determine quickly the abnormal growth of plants without supervisors. This paper considers the color distribution and shape information of leaf diseases, and designs two deep leaning networks in training the leaf diseases. In the first step, color distribution of input image is analyzed for possible diseases. In the second step, the image is first partitioned into small segments using mean shift clustering, and the color information of each segment is inspected by the proposed Color Network. When a segment is determined as disease, the shape parameters of the segment are extracted and inspected by proposed Shape Network to classify the leaf disease types in the third step. According to the experiments with two types of diseases (frogeye/rust and tipburn) for apple leaves and iceberg, the leaf diseases are detected with 92.3% recall for a segment and with 99.3% recall for an input image where there are usually more than two disease segments. The proposed method is useful for detecting leaf diseases quickly in the smart farm environment, and is extendible to various types of new plants and leaf diseases without additional learning.

A Study on the Design and Implementation of a Thermal Imaging Temperature Screening System for Monitoring the Risk of Infectious Diseases in Enclosed Indoor Spaces (밀폐공간 내 감염병 위험도 모니터링을 위한 열화상 온도 스크리닝 시스템 설계 및 구현에 대한 연구)

  • Jae-Young, Jung;You-Jin, Kim
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.2
    • /
    • pp.85-92
    • /
    • 2023
  • Respiratory infections such as COVID-19 mainly occur within enclosed spaces. The presence or absence of abnormal symptoms of respiratory infectious diseases is judged through initial symptoms such as fever, cough, sneezing and difficulty breathing, and constant monitoring of these early symptoms is required. In this paper, image matching correction was performed for the RGB camera module and the thermal imaging camera module, and the temperature of the thermal imaging camera module for the measurement environment was calibrated using a blackbody. To detection the target recommended by the standard, a deep learning-based object recognition algorithm and the inner canthus recognition model were developed, and the model accuracy was derived by applying a dataset of 100 experimenters. Also, the error according to the measured distance was corrected through the object distance measurement using the Lidar module and the linear regression correction module. To measure the performance of the proposed model, an experimental environment consisting of a motor stage, an infrared thermography temperature screening system and a blackbody was established, and the error accuracy within 0.28℃ was shown as a result of temperature measurement according to a variable distance between 1m and 3.5 m.

A Comparison of Pan-sharpening Algorithms for GK-2A Satellite Imagery (천리안위성 2A호 위성영상을 위한 영상융합기법의 비교평가)

  • Lee, Soobong;Choi, Jaewan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.4
    • /
    • pp.275-292
    • /
    • 2022
  • In order to detect climate changes using satellite imagery, the GCOS (Global Climate Observing System) defines requirements such as spatio-temporal resolution, stability by the time change, and uncertainty. Due to limitation of GK-2A sensor performance, the level-2 products can not satisfy the requirement, especially for spatial resolution. In this paper, we found the optimal pan-sharpening algorithm for GK-2A products. The six pan-sharpening methods included in CS (Component Substitution), MRA (Multi-Resolution Analysis), VO (Variational Optimization), and DL (Deep Learning) were used. In the case of DL, the synthesis property based method was used to generate training dataset. The process of synthesis property is that pan-sharpening model is applied with Pan (Panchromatic) and MS (Multispectral) images with reduced spatial resolution, and fused image is compared with the original MS image. In the synthesis property based method, fused image with desire level for user can be produced only when the geometric characteristics between the PAN with reduced spatial resolution and MS image are similar. However, since the dissimilarity exists, RD (Random Down-sampling) was additionally used as a way to minimize it. Among the pan-sharpening methods, PSGAN was applied with RD (PSGAN_RD). The fused images are qualitatively and quantitatively validated with consistency property and the synthesis property. As validation result, the GSA algorithm performs well in the evaluation index representing spatial characteristics. In the case of spectral characteristics, the PSGAN_RD has the best accuracy with the original MS image. Therefore, in consideration of spatial and spectral characteristics of fused image, we found that PSGAN_RD is suitable for GK-2A products.

An Overloaded Vehicle Identifying System based on Object Detection Model (객체 인식 모델을 활용한 적재불량 화물차 탐지 시스템 개발)

  • Jung, Woojin;Park, Yongju;Park, Jinuk;Kim, Chang-il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.562-565
    • /
    • 2022
  • Recently, the increasing number of overloaded vehicles on the road poses a risk to traffic safety, such as falling objects, road damage, and chain collisions due to the abnormal weight distribution, and can cause great damage once an accident occurs. However, this irregular weight distribution is not possible to be recognized with the current weight measurement system for vehicles on roads. To address this limitation, we propose to build an object detection-based AI model to identify overloaded vehicles that cause such social problems. In addition, we present a simple yet effective method to construct an object detection model for the large-scale vehicle images. In particular, we utilize the large-scale of vehicle image sets provided by open AI-Hub, which include the overloaded vehicles from the CCTV, black box, and hand-held camera point of view. We inspected the specific features of sizes of vehicles and types of image sources, and pre-processed these images to train a deep learning-based object detection model. Finally, we demonstrated that the detection performance of the overloaded vehicle was improved by about 23% compared to the one using raw data. From the result, we believe that public big data can be utilized more efficiently and applied to the development of an object detection-based overloaded vehicle detection model.

  • PDF

Scaling Attack Method for Misalignment Error of Camera-LiDAR Calibration Model (카메라-라이다 융합 모델의 오류 유발을 위한 스케일링 공격 방법)

  • Yi-ji Im;Dae-seon Choi
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.6
    • /
    • pp.1099-1110
    • /
    • 2023
  • The recognition system of autonomous driving and robot navigation performs vision work such as object recognition, tracking, and lane detection after multi-sensor fusion to improve performance. Currently, research on a deep learning model based on the fusion of a camera and a lidar sensor is being actively conducted. However, deep learning models are vulnerable to adversarial attacks through modulation of input data. Attacks on the existing multi-sensor-based autonomous driving recognition system are focused on inducing obstacle detection by lowering the confidence score of the object recognition model.However, there is a limitation that an attack is possible only in the target model. In the case of attacks on the sensor fusion stage, errors in vision work after fusion can be cascaded, and this risk needs to be considered. In addition, an attack on LIDAR's point cloud data, which is difficult to judge visually, makes it difficult to determine whether it is an attack. In this study, image scaling-based camera-lidar We propose an attack method that reduces the accuracy of LCCNet, a fusion model (camera-LiDAR calibration model). The proposed method is to perform a scaling attack on the point of the input lidar. As a result of conducting an attack performance experiment by size with a scaling algorithm, an average of more than 77% of fusion errors were caused.

Fault Diagnosis Algorithm of Electronic Valve using CNN-based Normalized Lissajous Curve (CNN기반 정규화 리사주 도형을 이용한 전자식 밸브 고장진단알고리즘)

  • Park, Seong-Mi;Ko, Jae-Ha;Song, Sung-Geun;Park, Sung-Jun;Son, Nam Rye
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.825-833
    • /
    • 2020
  • Currently, the K-Water uses various valves that can be remotely controlled for optimal water management. Valve system fault can be classified into rotor defects, stator defects, bearing defects, and gear defects of induction motors. If the valve cannot be operated due to a gear fault, the water management operation can be greatly affected. For effective water management, there is an urgent need for preemptive repairs to determine whether gear is damaged through failure prediction diagnosis.. Recently, deep learning algorithms are being applied for valve failure diagnosis. However, the method currently applied has a disadvantage of attaching a vibration sensor to the valve. In this paper, propose a new algorithm to determine whether a fault exists using a convolutional neural network (CNN) based on the voltage and current information of the valve without additional sensor mounting. In particular, a normalized Lisasjous diagram was used to maximize the fault classification performance in the CNN-based diagnostic system.

Artificial neural network algorithm comparison for exchange rate prediction

  • Shin, Noo Ri;Yun, Dai Yeol;Hwang, Chi-gon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.125-130
    • /
    • 2020
  • At the end of 1997, the volatility of the exchange rate intensified as the nation's exchange rate system was converted into a free-floating exchange rate system. As a result, managing the exchange rate is becoming a very important task, and the need for forecasting the exchange rate is growing. The exchange rate prediction model using the existing exchange rate prediction method, statistical technique, cannot find a nonlinear pattern of the time series variable, and it is difficult to analyze the time series with the variability cluster phenomenon. And as the number of variables to be analyzed increases, the number of parameters to be estimated increases, and it is not easy to interpret the meaning of the estimated coefficients. Accordingly, the exchange rate prediction model using artificial neural network, rather than statistical technique, is presented. Using DNN, which is the basis of deep learning among artificial neural networks, and LSTM, a recurrent neural network model, the number of hidden layers, neurons, and activation function changes of each model found the optimal exchange rate prediction model. The study found that although there were model differences, LSTM models performed better than DNN models and performed best when the activation function was Tanh.

Towards Real-time Multi-object Tracking in CPU Environment (CPU 환경에서의 실시간 동작을 위한 딥러닝 기반 다중 객체 추적 시스템)

  • Kim, Kyung Hun;Heo, Jun Ho;Kang, Suk-Ju
    • Journal of Broadcast Engineering
    • /
    • v.25 no.2
    • /
    • pp.192-199
    • /
    • 2020
  • Recently, the utilization of the object tracking algorithm based on the deep learning model is increasing. A system for tracking multiple objects in an image is typically composed of a chain form of an object detection algorithm and an object tracking algorithm. However, chain-type systems composed of several modules require a high performance computing environment and have limitations in their application to actual applications. In this paper, we propose a method that enables real-time operation in low-performance computing environment by adjusting the computational process of object detection module in the object detection-tracking chain type system.