• Title/Summary/Keyword: Deep Learning System

Search Result 1,745, Processing Time 0.027 seconds

Implementation of an Intelligent Video Detection System using Deep Learning in the Manufacturing Process of Tungsten Hexafluoride (딥러닝을 이용한 육불화텅스텐(WF6) 제조 공정의 지능형 영상 감지 시스템 구현)

  • Son, Seung-Yong;Kim, Young Mok;Choi, Doo-Hyun
    • Korean Journal of Materials Research
    • /
    • v.31 no.12
    • /
    • pp.719-726
    • /
    • 2021
  • Through the process of chemical vapor deposition, Tungsten Hexafluoride (WF6) is widely used by the semiconductor industry to form tungsten films. Tungsten Hexafluoride (WF6) is produced through manufacturing processes such as pulverization, wet smelting, calcination and reduction of tungsten ores. The manufacturing process of Tungsten Hexafluoride (WF6) is required thorough quality control to improve productivity. In this paper, a real-time detection system for oxidation defects that occur in the manufacturing process of Tungsten Hexafluoride (WF6) is proposed. The proposed system is implemented by applying YOLOv5 based on Convolutional Neural Network (CNN); it is expected to enable more stable management than existing management, which relies on skilled workers. The implementation method of the proposed system and the results of performance comparison are presented to prove the feasibility of the method for improving the efficiency of the WF6 manufacturing process in this paper. The proposed system applying YOLOv5s, which is the most suitable material in the actual production environment, demonstrates high accuracy (mAP@0.5 99.4 %) and real-time detection speed (FPS 46).

Application of AI Technology in Requirements Analysis and Architecture Definition - status and prospects (요구사항 분석 및 아키텍처 정의 분야의 인공지능 적용 현황 및 방향)

  • Jin Il, Kim;Choong Sub, Yeum;Joong Uk, Shin
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.18 no.2
    • /
    • pp.50-57
    • /
    • 2022
  • Along with the development of the 4th Industrial Revolution technology, artificial intelligence technology is also being used in the field of systems engineering. This study analyzed the development status of artificial intelligence technology in the areas of systems engineering core processes such as stakeholder needs and requirements definition, system requirement analysis, and system architecture definition, and presented future technology development directions. In the definition of stakeholder needs and requirements, technology development is underway to compensate for the shortcomings of the existing requirement extraction methods. In the field of system requirement analysis, technology for automatically checking errors in individual requirements and technology for analyzing categories of requirements are being developed. In the field of system architecture definition, a technology for automatically generating architectures for each system sector based on requirements is being developed. In this study, these contents were summarized and future development directions were presented.

Cloth Product Recognition based on Siamese Network with Body Region Extraction method

  • Budiman, Sutanto Edward;Kurniawan, Edwin;Lee, Seung Heon;Lee, Jae Seung;Lee, Suk-Ho
    • International journal of advanced smart convergence
    • /
    • v.11 no.2
    • /
    • pp.128-134
    • /
    • 2022
  • Nowadays, people consume a lot of content such as web dramas or K-pop videos through mobile devices such as smartphones, and the market for indirect advertisements through these web dramas or K-pop videos is also increasing every year. In order to lead to the immediate purchase of indirect products in web dramas, a system that allows consumers to purchase immediately at the time the products appear in the drama is needed. In this paper, we propose a system to allow viewers to purchase products worn by celebrities immediately when viewers see and click on them. When a user clicks on a video, it recognizes the product worn by the celebrity, and displays information on the screen on the most similar product corresponding to the recognized product, allowing them to go to the seller's site where they can purchase it. In order for such a system to operate stably, a pose estimation and siamese network-based system is proposed. The proposed system will primarily be released as a streaming service in the form of an app or web page that connects the products in web dramas or other K-pop video contents screened on the mobile with e-commerce. Furthermore, in the future, the technology is expected to be used globally in various industries such as smart mobility and display kiosks.

Measures to Reduce Traffic Accidents in School Zones using Artificial Intelligence

  • Park, Moon-Soo;Park, Dea-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.162-164
    • /
    • 2022
  • Efforts are being made to prevent traffic accidents within the child protection zone. Efforts are being made to prevent accidents by enacting safety facilities and laws to prevent traffic accidents in the school zone. However, traffic accidents in school zones continue to occur. If the driver can know the situation in the child protection zone in advance, accidents can be reduced. In this paper, we design a camera that eliminates blind spots in school zones and a number recognition camera system that can collect pre-traffic information. Design a LIDAR system that recognizes vehicle speed and pedestrians. Design an LED guidance system that delivers information to drivers without smart devices. We study time series analysis and artificial intelligence algorithms that collect and process pedestrian and vehicle information recognized by cameras and LIDAR. In the artificial intelligence traffic accident prevention system learned by deep learning, before entering the school zone, the school zone information is sent to the driver through the Force Push Service and the school zone information is delivered to the driver on the LED sign. try to reduce accidents.

  • PDF

Smart Quote Comparison System for Repair and Maintenance Vehicles (자동차 수리 및 정비를 위한 스마트 견적 비교 시스템)

  • Young Bok Joo;Eun Bi Son;Tae San Kim;Soo Ah Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.99-102
    • /
    • 2023
  • In this paper, the system is proposed and implemented to share the part number, the part name, and the vehicle type through the improvement sharing bulletin board for automobile repair and maintenance. And when photos of damage parts are uploaded to the system, the system analyzes it using a deep learning model to analyze whether it is damaged and automatically classify the type of damage. By providing repair and maintenance quotes for a significant part, the system provides economically repaired by providing comparative adjustment information on repair costs to drivers who are particularly concerned about the market prices of parts and maintenance services. Through the existing bulletin board, you can exchange and share information about parts by sharing various information on repair and maintenance. This paper provides in detail the average market price per type of damage during automobile repair and maintenance, helping drivers who do not know the details of parts and maintenance services to receive reasonable quotes by providing price information.

  • PDF

Semi-supervised domain adaptation using unlabeled data for end-to-end speech recognition (라벨이 없는 데이터를 사용한 종단간 음성인식기의 준교사 방식 도메인 적응)

  • Jeong, Hyeonjae;Goo, Jahyun;Kim, Hoirin
    • Phonetics and Speech Sciences
    • /
    • v.12 no.2
    • /
    • pp.29-37
    • /
    • 2020
  • Recently, the neural network-based deep learning algorithm has dramatically improved performance compared to the classical Gaussian mixture model based hidden Markov model (GMM-HMM) automatic speech recognition (ASR) system. In addition, researches on end-to-end (E2E) speech recognition systems integrating language modeling and decoding processes have been actively conducted to better utilize the advantages of deep learning techniques. In general, E2E ASR systems consist of multiple layers of encoder-decoder structure with attention. Therefore, E2E ASR systems require data with a large amount of speech-text paired data in order to achieve good performance. Obtaining speech-text paired data requires a lot of human labor and time, and is a high barrier to building E2E ASR system. Therefore, there are previous studies that improve the performance of E2E ASR system using relatively small amount of speech-text paired data, but most studies have been conducted by using only speech-only data or text-only data. In this study, we proposed a semi-supervised training method that enables E2E ASR system to perform well in corpus in different domains by using both speech or text only data. The proposed method works effectively by adapting to different domains, showing good performance in the target domain and not degrading much in the source domain.

Design and Implementation of Visitor Access Control System using Deep learning Face Recognition (딥러닝 얼굴인식 기술을 활용한 방문자 출입관리 시스템 설계와 구현)

  • Heo, Seok-Yeol;Kim, Kang Min;Lee, Wan-Jik
    • Journal of Digital Convergence
    • /
    • v.19 no.2
    • /
    • pp.245-251
    • /
    • 2021
  • As the trend of steadily increasing the number of single or double household, there is a growing demand to see who is the outsider visiting the home during the free time. Various models of face recognition technology have been proposed through many studies, and Harr Cascade of OpenCV and Hog of Dlib are representative open source models. Among the two modes, Dlib's Hog has strengths in front of the indoor and at a limited distance, which is the focus of this study. In this paper, a face recognition visitor access system based on Dlib was designed and implemented. The whole system consists of a front module, a server module, and a mobile module, and in detail, it includes face registration, face recognition, real-time visitor verification and remote control, and video storage functions. The Precision, Specificity, and Accuracy according to the change of the distance threshold value were calculated using the error matrix with the photos published on the Internet, and compared with the results of previous studies. As a result of the experiment, it was confirmed that the implemented system was operating normally, and the result was confirmed to be similar to that reported by Dlib.

Drone-mounted fruit recognition algorithm and harvesting mechanism for automatic fruit harvesting (자동 과일 수확을 위한 드론 탑재형 과일 인식 알고리즘 및 수확 메커니즘)

  • Joo, Kiyoung;Hwang, Bohyun;Lee, Sangmin;Kim, Byungkyu;Baek, Joong-Hwan
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.1
    • /
    • pp.49-55
    • /
    • 2022
  • The role of drones has been expanded to various fields such as agriculture, construction, and logistics. In particular, agriculture drones are emerging as an effective alternative to solve the problem of labor shortage and reduce the input cost. In this study therefore, we proposed the fruit recognition algorithm and harvesting mechanism for fruit harvesting drone system that can safely harvest fruits at high positions. In the fruit recognition algorithm, we employ "You-Only-Look-Once" which is a deep learning-based object detection algorithm and verify its feasibility by establishing a virtual simulation environment. In addition, we propose the fruit harvesting mechanism which can be operated by a single driving motor. The rotational motion of the motor is converted into a linear motion by the scotch yoke, and the opened gripper moves forward, grips a fruit and rotates it for harvesting. The feasibility of the proposed mechanism is verified by performing Multi-body dynamics analysis.

LeafNet: Plants Segmentation using CNN (LeafNet: 합성곱 신경망을 이용한 식물체 분할)

  • Jo, Jeong Won;Lee, Min Hye;Lee, Hong Ro;Chung, Yong Suk;Baek, Jeong Ho;Kim, Kyung Hwan;Lee, Chang Woo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.4
    • /
    • pp.1-8
    • /
    • 2019
  • Plant phenomics is a technique for observing and analyzing morphological features in order to select plant varieties of excellent traits. The conventional methods is difficult to apply to the phenomics system. because the color threshold value must be manually changed according to the detection target. In this paper, we propose the convolution neural network (CNN) structure that can automatically segment plants from the background for the phenomics system. The LeafNet consists of nine convolution layers and a sigmoid activation function for determining the presence of plants. As a result of the learning using the LeafNet, we obtained a precision of 98.0% and a recall rate of 90.3% for the plant seedlings images. This confirms the applicability of the phenomics system.

Object Detection Algorithm for Explaining Products to the Visually Impaired (시각장애인에게 상품을 안내하기 위한 객체 식별 알고리즘)

  • Park, Dong-Yeon;Lim, Soon-Bum
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.10
    • /
    • pp.1-10
    • /
    • 2022
  • Visually impaired people have very difficulty using retail stores due to the absence of braille information on products and any other support system. In this paper, we propose a basic algorithm for a system that recognizes products in retail stores and explains them as a voice. First, the deep learning model detects hand objects and product objects in the input image. Then, it finds a product object that most overlapping hand object by comparing the coordinate information of each detected object. We determine that this is a product selected by the user, and the system read the nutritional information of the product as Text-To-Speech. As a result of the evaluation, we confirmed a high performance of the learning model. The proposed algorithm can be actively used to build a system that supports the use of retail stores for the visually impaired.