Journal of Korea Society of Industrial Information Systems
/
v.29
no.1
/
pp.135-144
/
2024
In this study, we propose an automatic classification model for quantitative multidimensional analysis based on facet theory to understand public opinions and demands on major issues through big data analysis. Civil complaints, as a form of public feedback, are generated by various individuals on multiple topics repeatedly and continuously in real-time, which can be challenging for officials to read and analyze efficiently. Specifically, our research introduces a new classification framework that utilizes facet theory and political analysis models to analyze the characteristics of citizen complaints and apply them to the policy-making process. Furthermore, to reduce administrative tasks related to complaint analysis and processing and to facilitate citizen policy participation, we employ deep learning to automatically extract and classify attributes based on the facet analysis framework. The results of this study are expected to provide important insights into understanding and analyzing the characteristics of big data related to citizen complaints, which can pave the way for future research in various fields beyond the public sector, such as education, industry, and healthcare, for quantifying unstructured data and utilizing multidimensional analysis. In practical terms, improving the processing system for large-scale electronic complaints and automation through deep learning can enhance the efficiency and responsiveness of complaint handling, and this approach can also be applied to text data processing in other fields.
Kim, Seon-Wu;Ko, Gun-Woo;Choi, Won-Jun;Jeong, Hee-Seok;Yoon, Hwa-Mook;Choi, Sung-Pil
Journal of the Korean Society for information Management
/
v.35
no.4
/
pp.141-164
/
2018
Recently, as the amount of academic literature has increased rapidly and complex researches have been actively conducted, researchers have difficulty in analyzing trends in previous research. In order to solve this problem, it is necessary to classify information in units of academic papers. However, in Korea, there is no academic database in which such information is provided. In this paper, we propose an automatic classification system that can classify domestic academic literature into multiple classes. To this end, first, academic documents in the technical science field described in Korean were collected and mapped according to class 600 of the DDC by using K-Means clustering technique to construct a learning set capable of multiple classification. As a result of the construction of the training set, 63,915 documents in the Korean technical science field were established except for the values in which metadata does not exist. Using this training set, we implemented and learned the automatic classification engine of academic documents based on deep learning. Experimental results obtained by hand-built experimental set-up showed 78.32% accuracy and 72.45% F1 performance for multiple classification.
International Journal of Computer Science & Network Security
/
v.21
no.8
/
pp.288-296
/
2021
Automated face recognition in a runtime environment is gaining more and more important in the fields of surveillance and urban security. This is a difficult task keeping in mind the constantly volatile image landscape with varying features and attributes. For a system to be beneficial in industrial settings, it is pertinent that its efficiency isn't compromised when running on roads, intersections, and busy streets. However, recognition in such uncontrolled circumstances is a major problem in real-life applications. In this paper, the main problem of face recognition in which full face is not visible (Occlusion). This is a common occurrence as any person can change his features by wearing a scarf, sunglass or by merely growing a mustache or beard. Such types of discrepancies in facial appearance are frequently stumbled upon in an uncontrolled circumstance and possibly will be a reason to the security systems which are based upon face recognition. These types of variations are very common in a real-life environment. It has been analyzed that it has been studied less in literature but now researchers have a major focus on this type of variation. Existing state-of-the-art techniques suffer from several limitations. Most significant amongst them are low level of usability and poor response time in case of any calamity. In this paper, an improved face recognition system is developed to solve the problem of occlusion known as FRS-OCC. To build the FRS-OCC system, the color and texture features are used and then an incremental learning algorithm (Learn++) to select more informative features. Afterward, the trained stack-based autoencoder (SAE) deep learning algorithm is used to recognize a human face. Overall, the FRS-OCC system is used to introduce such algorithms which enhance the response time to guarantee a benchmark quality of service in any situation. To test and evaluate the performance of the proposed FRS-OCC system, the AR face dataset is utilized. On average, the FRS-OCC system is outperformed and achieved SE of 98.82%, SP of 98.49%, AC of 98.76% and AUC of 0.9995 compared to other state-of-the-art methods. The obtained results indicate that the FRS-OCC system can be used in any surveillance application.
Recently, numbers of long span pedestrian suspension bridges have been constructed worldwide. While recent tragedies regarding pedestrian suspension bridges have shown how these bridges can wreak havoc on the society, there are no specific guidelines for construction standards nor safety inspections yet. Therefore, a structural health monitoring system that could help ensure the safety of pedestrian suspension bridges are needed. System identification is one of the popular applications for structural health monitoring method, which estimates the dynamic system. Most of the system identification methods for bridges are currently adapting output-only system identification method, which assumes the dynamic load to be a white noise due to the difficulty of measuring the dynamic load. In the case of pedestrian suspension bridges, the pedestrian load is within specific frequency range, resulting in large errors when using the output-only system identification method. Therefore, this study aims to develop a system identification method for pedestrian suspension bridges considering both input and output of the dynamic system. This study estimates the location and the magnitude of the pedestrian load, as well as the dynamic response of the pedestrian bridges by utilizing artificial intelligence and computer vision techniques. A simulation-based validation test was conducted to verify the performance of the proposed system. The proposed method is expected to improve the accuracy and the efficiency of the current inspection and monitoring systems for pedestrian suspension bridges.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.18
no.4
/
pp.44-57
/
2019
Various studies have been conducted to solve traffic congestions in many metropolitan cities through accurate traffic flow prediction. Most studies are based on the assumption that past traffic patterns repeat in the future. Models based on such an assumption fall short in case irregular traffic patterns abruptly occur. Instead, the approaches such as predicting traffic pattern through big data analytics and artificial intelligence have emerged. Specifically, deep learning algorithms such as RNN have been prevalent for tackling the problems of predicting temporal traffic flow as a time series. However, these algorithms do not perform well in terms of long-term prediction. In this paper, we take into account various external factors that may affect the traffic flows. We model the correlation between the multi-dimensional context information with temporal traffic speed pattern using deep neural networks. Our model trained with the traffic data from TOPIS system by Seoul, Korea can predict traffic speed on a specific date with the accuracy reaching nearly 90%. We expect that the accuracy can be improved further by taking into account additional factors such as accidents and constructions for the prediction.
Kim, GyeongMin;Han, Seunggnyu;Oh, Dongsuk;Lim, HeuiSeok
Journal of Digital Convergence
/
v.17
no.12
/
pp.243-248
/
2019
Multi-Task Learning(MTL) is a training method that trains a single neural network with multiple tasks influences each other. In this paper, we compare performance of MTL Named entity recognition(NER) model trained with Korean traditional culture corpus and other NER model. In training process, each Bi-LSTM layer of Part of speech tagging(POS-tagging) and NER are propagated from a Bi-LSTM layer to obtain the joint loss. As a result, the MTL based Bi-LSTM model shows 1.1%~4.6% performance improvement compared to single Bi-LSTM models.
Journal of the Korea Institute of Information Security & Cryptology
/
v.33
no.1
/
pp.1-12
/
2023
It is very time-intensive to obtain data with labels on anomaly detection tasks for multivariate time series. Therefore, several studies have been conducted on unsupervised learning that does not require any labels. However, a well-done integrative survey has not been conducted on in-depth discussion of learning architecture and property for multivariate time series anomaly detection. This study aims to explore the characteristic of well-known architectures in anomaly detection of multivariate time series. Additionally, architecture was categorized by using top-down and bottom-up approaches. In order toconsider real-world anomaly detection situation, we trained models with dataset such as power grids or Cyber Physical Systems that contains realistic anomalies. From experimental results, we compared and analyzed the comprehensive performance of each architecture. Quantitative performance were measured using precision, recall, and F1 scores.
International Journal of Computer Science & Network Security
/
v.23
no.10
/
pp.199-208
/
2023
The emergence of COVID-19 virus has shaken almost every aspect of human life including but not limited to social, financial, and economic changes. One of the most significant impacts was obviously healthcare. Now though the pandemic has been over, its aftereffects are still there. Among them, a prominent one is people lifestyle. Work from home, enhanced screen time, limited mobility and walking habits, junk food, lack of sleep etc. are several factors that have still been affecting human health. Consequently, diseases like diabetes, high blood pressure, anxiety etc. have been emerging at a speed never witnessed before and it mainly includes the people at young age. The situation demands an early prediction, detection, and warning system to alert the people at risk. AI and Machine learning has been investigated tremendously for solving the problems in almost every aspect of human life, especially healthcare and results are promising. This study focuses on reviewing the machine learning based approaches conducted in detection and prediction of diabetes especially during and post pandemic era. That will help find a research gap and significance of the study especially for the researchers and scholars in the same field.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.20
no.1
/
pp.225-229
/
2020
Recently, convolutional neural network (CNN) have been showed outstanding performance in the field of image recognition, image processing and computer vision, etc. In this paper, we propose a CNN-based image rotation correction algorithm as a solution to image rotation problem, which is one of the factors that reduce the recognition rate in image recognition system using CNN. In this paper, we trained our deep learning model with Leeds Sports Pose dataset to extract the information of the rotated angle, which is randomly set in specific range. The trained model is evaluated with mean absolute error (MAE) value over 100 test data images, and it is obtained 4.5951.
Testing TB in chest X-ray images is a typical method to diagnose presence and magnitude of PTB lesion. However, the method has limitation due to inter-reader variability. Therefore, it is essential to overcome this drawback with automatic interpretation. In this study, we propose a novel method for detection of PTB using SegNet, which is a deep learning architecture for semantic pixel wise image labelling. SegNet is composed of a stack of encoders followed by a corresponding decoder stack which feeds into a soft-max classification layer. We modified parameters of SegNet to change the number of classes from 12 to 2 (TB or none-TB) and applied the architecture to automatically interpret chest radiographs. 552 chest X-ray images, provided by The Korean Institute of Tuberculosis, used for training and test and we constructed a receiver operating characteristic (ROC) curve. As a consequence, the area under the curve (AUC) was 90.4% (95% CI:[85.1, 95.7]) with a classification accuracy of 84.3%. A sensitivity was 85.7% and specificity was 82.8% on 431 training images (TB 172, none-TB 259) and 121 test images (TB 63, none-TB 58). This results show that detecting PTB using SegNet is comparable to other PTB detection methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.