• 제목/요약/키워드: Deep Learning Model Comparison

검색결과 196건 처리시간 0.021초

스트리밍 서버를 이용한 AWS 기반의 딥러닝 플랫폼 구현과 성능 비교 실험 (Implementation of AWS-based deep learning platform using streaming server and performance comparison experiment)

  • 윤필상;김도연;정구민
    • 한국정보전자통신기술학회논문지
    • /
    • 제12권6호
    • /
    • pp.591-596
    • /
    • 2019
  • 본 논문에서는 로컬 PC의 성능이 주는 영향이 적은 딥러닝 동작 구조를 구현하였다. 일반적으로, 딥러닝 모델은 많은 연산량을 가지고 있어 처리하는 PC의 성능에 영향을 많이 받는다. 본 논문에서는 이와 같은 제약 사항을 줄이기 위하여 AWS와 스트리밍 서버를 이용하여 딥러닝 동작을 구현하였다. 첫 번째, AWS에서 딥러닝 연산을 하여 로컬 PC의 성능이 떨어지더라도 딥러닝 동작이 정상적으로 작동할 수 있도록 하였다. 하지만 AWS를 통해 연산 시 입력에 대해 출력의 실시간성이 떨어진다. 두 번째, 스트리밍 서버를 이용하여 딥러닝 모델의 실시간성을 증가시킨다. 스트리밍 서버를 사용하지 않았을 경우 한 이미지씩 처리하거나 이미지를 쌓아서 동영상으로 만들어 처리하여야 하기 때문에 실시간성이 떨어진다. 성능 비교 실험을 위한 딥러닝 모델로는 YOLO v3모델을 사용하였고, AWS의 인스턴스들 및 고성능 GPU인 GTX1080을 탑재한 로컬 PC의 성능을 비교하였다. 시뮬레이션 결과 AWS의 인스턴스인 p3 인스턴스를 사용하였을 때 한 이미지 당 테스트 시간이 0.023444초로써 고성능 GPU인 GTX1080을 탑재한 로컬 PC의 한 이미지 당 테스트 시간인 0.027099초와 유사하다는 결과를 얻었다.

Centralized Machine Learning Versus Federated Averaging: A Comparison using MNIST Dataset

  • Peng, Sony;Yang, Yixuan;Mao, Makara;Park, Doo-Soon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권2호
    • /
    • pp.742-756
    • /
    • 2022
  • A flood of information has occurred with the rise of the internet and digital devices in the fourth industrial revolution era. Every millisecond, massive amounts of structured and unstructured data are generated; smartphones, wearable devices, sensors, and self-driving cars are just a few examples of devices that currently generate massive amounts of data in our daily. Machine learning has been considered an approach to support and recognize patterns in data in many areas to provide a convenient way to other sectors, including the healthcare sector, government sector, banks, military sector, and more. However, the conventional machine learning model requires the data owner to upload their information to train the model in one central location to perform the model training. This classical model has caused data owners to worry about the risks of transferring private information because traditional machine learning is required to push their data to the cloud to process the model training. Furthermore, the training of machine learning and deep learning models requires massive computing resources. Thus, many researchers have jumped to a new model known as "Federated Learning". Federated learning is emerging to train Artificial Intelligence models over distributed clients, and it provides secure privacy information to the data owner. Hence, this paper implements Federated Averaging with a Deep Neural Network to classify the handwriting image and protect the sensitive data. Moreover, we compare the centralized machine learning model with federated averaging. The result shows the centralized machine learning model outperforms federated learning in terms of accuracy, but this classical model produces another risk, like privacy concern, due to the data being stored in the data center. The MNIST dataset was used in this experiment.

Development of a Hybrid Deep-Learning Model for the Human Activity Recognition based on the Wristband Accelerometer Signals

  • Jeong, Seungmin;Oh, Dongik
    • 인터넷정보학회논문지
    • /
    • 제22권3호
    • /
    • pp.9-16
    • /
    • 2021
  • This study aims to develop a human activity recognition (HAR) system as a Deep-Learning (DL) classification model, distinguishing various human activities. We solely rely on the signals from a wristband accelerometer worn by a person for the user's convenience. 3-axis sequential acceleration signal data are gathered within a predefined time-window-slice, and they are used as input to the classification system. We are particularly interested in developing a Deep-Learning model that can outperform conventional machine learning classification performance. A total of 13 activities based on the laboratory experiments' data are used for the initial performance comparison. We have improved classification performance using the Convolutional Neural Network (CNN) combined with an auto-encoder feature reduction and parameter tuning. With various publically available HAR datasets, we could also achieve significant improvement in HAR classification. Our CNN model is also compared against Recurrent-Neural-Network(RNN) with Long Short-Term Memory(LSTM) to demonstrate its superiority. Noticeably, our model could distinguish both general activities and near-identical activities such as sitting down on the chair and floor, with almost perfect classification accuracy.

암호화폐 가격 예측을 위한 딥러닝 앙상블 모델링 : Deep 4-LSTM Ensemble Model (Development of Deep Learning Ensemble Modeling for Cryptocurrency Price Prediction : Deep 4-LSTM Ensemble Model)

  • 최수빈;신동훈;윤상혁;김희웅
    • 한국IT서비스학회지
    • /
    • 제19권6호
    • /
    • pp.131-144
    • /
    • 2020
  • As the blockchain technology attracts attention, interest in cryptocurrency that is received as a reward is also increasing. Currently, investments and transactions are continuing with the expectation and increasing value of cryptocurrency. Accordingly, prediction for cryptocurrency price has been attempted through artificial intelligence technology and social sentiment analysis. The purpose of this paper is to develop a deep learning ensemble model for predicting the price fluctuations and one-day lag price of cryptocurrency based on the design science research method. This paper intends to perform predictive modeling on Ethereum among cryptocurrencies to make predictions more efficiently and accurately than existing models. Therefore, it collects data for five years related to Ethereum price and performs pre-processing through customized functions. In the model development stage, four LSTM models, which are efficient for time series data processing, are utilized to build an ensemble model with the optimal combination of hyperparameters found in the experimental process. Then, based on the performance evaluation scale, the superiority of the model is evaluated through comparison with other deep learning models. The results of this paper have a practical contribution that can be used as a model that shows high performance and predictive rate for cryptocurrency price prediction and price fluctuations. Besides, it shows academic contribution in that it improves the quality of research by following scientific design research procedures that solve scientific problems and create and evaluate new and innovative products in the field of information systems.

Plant Disease Identification using Deep Neural Networks

  • Mukherjee, Subham;Kumar, Pradeep;Saini, Rajkumar;Roy, Partha Pratim;Dogra, Debi Prosad;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • 제4권4호
    • /
    • pp.233-238
    • /
    • 2017
  • Automatic identification of disease in plants from their leaves is one of the most challenging task to researchers. Diseases among plants degrade their performance and results into a huge reduction of agricultural products. Therefore, early and accurate diagnosis of such disease is of the utmost importance. The advancement in deep Convolutional Neural Network (CNN) has change the way of processing images as compared to traditional image processing techniques. Deep learning architectures are composed of multiple processing layers that learn the representations of data with multiple levels of abstraction. Therefore, proved highly effective in comparison to many state-of-the-art works. In this paper, we present a plant disease identification methodology from their leaves using deep CNNs. For this, we have adopted GoogLeNet that is considered a powerful architecture of deep learning to identify the disease types. Transfer learning has been used to fine tune the pre-trained model. An accuracy of 85.04% has been recorded in the identification of four disease class in Apple plant leaves. Finally, a comparison with other models has been performed to show the effectiveness of the approach.

시계열 분석 모형 및 머신 러닝 분석을 이용한 수출 증가율 장기예측 성능 비교 (Comparison of long-term forecasting performance of export growth rate using time series analysis models and machine learning analysis)

  • 남성휘
    • 무역학회지
    • /
    • 제46권6호
    • /
    • pp.191-209
    • /
    • 2021
  • In this paper, various time series analysis models and machine learning models are presented for long-term prediction of export growth rate, and the prediction performance is compared and reviewed by RMSE and MAE. Export growth rate is one of the major economic indicators to evaluate the economic status. And It is also used to predict economic forecast. The export growth rate may have a negative (-) value as well as a positive (+) value. Therefore, Instead of using the ReLU function, which is often used for time series prediction of deep learning models, the PReLU function, which can have a negative (-) value as an output value, was used as the activation function of deep learning models. The time series prediction performance of each model for three types of data was compared and reviewed. The forecast data of long-term prediction of export growth rate was deduced by three forecast methods such as a fixed forecast method, a recursive forecast method and a rolling forecast method. As a result of the forecast, the traditional time series analysis model, ARDL, showed excellent performance, but as the time period of learning data increases, the performance of machine learning models including LSTM was relatively improved.

딥러닝 알고리즘별 미세먼지 고농도 예측 성능 비교 (Comparison of High Concentration Prediction Performance of Particulate Matter by Deep Learning Algorithm)

  • 이종성;정용진;오창헌
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.348-350
    • /
    • 2021
  • 딥러닝을 이용하여 미세먼지 농도를 예측함에 있어 81㎍/m3 이상의 고농도에 대한 특성이 예측 모델에 잘 반영되지 않는 문제가 있다. 본 논문에서는 딥러닝 알고리즘에 따라 고농도 영역에서의 미세먼지에 대한 특성 반영에 대한 결과를 확인하기 위해 예측 성능을 통한 비교를 진행하였다. 성능 평가 결과, 전반적으로 비슷한 수준의 결과를 보였으나, AQI 기준 "매우 나쁨"의 농도에서 RNN 모델이 다른 모델에 비해 보다 높은 정확도를 보였다. 이는 RNN 알고리즘이 DNN, LSTM 알고리즘보다 고농도에 대한 특성 반영이 잘 이루어진 결과를 확인하였다.

  • PDF

터널 내 돌발상황 오탐지 영상의 반복 학습을 통한 딥러닝 추론 성능의 자가 성장 효과 (Effect on self-enhancement of deep-learning inference by repeated training of false detection cases in tunnel accident image detection)

  • 이규범;신휴성
    • 한국터널지하공간학회 논문집
    • /
    • 제21권3호
    • /
    • pp.419-432
    • /
    • 2019
  • 대부분 딥러닝 모델의 학습은 입력값과 입력값에 따른 출력값이 포함된 레이블링 데이터(labeling data)를 학습하는 지도 학습(supervised learning)으로 진행된다. 레이블링 데이터는 인간이 직접 제작하므로 데이터의 정확도가 높다는 장점이 있지만 비용과 시간의 문제로 인해 데이터의 확보에 많은 노력이 소요된다. 그리고 지도 학습의 목표는 정탐지 데이터(true positive data)의 인식 성능 향상에 초점이 맞추어져 있으며, 오탐지 데이터(false positive data)의 발생에 대한 대처는 미흡한 실정이다. 본 논문은 터널 관제센터에 투입된 딥러닝 모델 기반 영상유고 시스템의 모니터링을 통해 정탐지와 레이블링 데이터의 학습으로 예측하기 힘든 오탐지의 발생을 확인하였다. 오탐지의 유형은 작업차량의 경광등, 터널 입구부에서 반사되는 햇빛, 차선과 차량의 일부에서 발생하는 길쭉한 검은 음영 등이 화재와 보행자로 오탐지되고 있었다. 이러한 문제를 해결하기 위해 현장에서 발생한 오탐지 데이터와 레이블링 데이터를 동시에 학습하여 딥러닝 모델을 개발하였으며, 그 결과 기존 레이블링 데이터만 학습한 모델과 비교하면 레이블링 데이터에 대한 재추론 성능이 향상됨을 알 수 있었다. 그리고 오탐지 데이터에 대한 재추론을 한 결과 오탐지 데이터를 많이 포함하여 학습한 모델일 경우 보행자의 오탐지 개수가 훨씬 줄었으며, 오탐지 데이터의 학습을 통해 딥러닝 모델의 현장 적용성을 향상시킬 수 있었다.

Research on Chinese Microblog Sentiment Classification Based on TextCNN-BiLSTM Model

  • Haiqin Tang;Ruirui Zhang
    • Journal of Information Processing Systems
    • /
    • 제19권6호
    • /
    • pp.842-857
    • /
    • 2023
  • Currently, most sentiment classification models on microblogging platforms analyze sentence parts of speech and emoticons without comprehending users' emotional inclinations and grasping moral nuances. This study proposes a hybrid sentiment analysis model. Given the distinct nature of microblog comments, the model employs a combined stop-word list and word2vec for word vectorization. To mitigate local information loss, the TextCNN model, devoid of pooling layers, is employed for local feature extraction, while BiLSTM is utilized for contextual feature extraction in deep learning. Subsequently, microblog comment sentiments are categorized using a classification layer. Given the binary classification task at the output layer and the numerous hidden layers within BiLSTM, the Tanh activation function is adopted in this model. Experimental findings demonstrate that the enhanced TextCNN-BiLSTM model attains a precision of 94.75%. This represents a 1.21%, 1.25%, and 1.25% enhancement in precision, recall, and F1 values, respectively, in comparison to the individual deep learning models TextCNN. Furthermore, it outperforms BiLSTM by 0.78%, 0.9%, and 0.9% in precision, recall, and F1 values.

전이학습을 이용한 UNet 기반 건물 추출 딥러닝 모델의 학습률에 따른 성능 향상 분석 (Performance Improvement Analysis of Building Extraction Deep Learning Model Based on UNet Using Transfer Learning at Different Learning Rates)

  • 예철수;안영만;백태웅;김경태
    • 대한원격탐사학회지
    • /
    • 제39권5_4호
    • /
    • pp.1111-1123
    • /
    • 2023
  • 원격탐사 영상을 이용한 지표 속성의 변화를 모니터링 하기 위해서 딥러닝(deep learning) 모델을 이용한 의미론적 영상 분할 방법이 최근에 널리 사용되고 있다. 대표적인 의미론적 영상 분할 딥러닝 모델인 UNet 모델을 비롯하여 다양한 종류의 UNet 기반의 딥러닝 모델들의 성능 향상을 위해서는 학습 데이터셋의 크기가 충분해야 한다. 학습 데이터셋의 크기가 커지면 이를 처리하는 하드웨어 요구 사항도 커지고 학습에 소요되는 시간도 크게 증가되는 문제점이 발생한다. 이런 문제를 해결할 수 있는 방법인 전이학습은 대규모의 학습 데이터 셋이 없어도 모델 성능을 향상시킬 수 있는 효과적인 방법이다. 본 논문에서는 UNet 기반의 딥러닝 모델들을 대표적인 사전 학습 모델(pretrained model)인 VGG19 모델 및 ResNet50 모델과 결합한 세 종류의 전이학습 모델인 UNet-ResNet50 모델, UNet-VGG19 모델, CBAM-DRUNet-VGG19 모델을 제시하고 이를 건물 추출에 적용하여 전이학습 적용에 따른 정확도 향상을 분석하였다. 딥러닝 모델의 성능이 학습률의 영향을 많이 받는 점을 고려하여 학습률 설정에 따른 각 모델별 성능 변화도 함께 분석하였다. 건물 추출 결과의 성능 평가를 위해서 Kompsat-3A 데이터셋, WHU 데이터셋, INRIA 데이터셋을 사용하였으며 세 종류의 데이터셋에 대한 정확도 향상의 평균은 UNet 모델 대비 UNet-ResNet50 모델이 5.1%, UNet-VGG19 모델과 CBAM-DRUNet-VGG19 모델은 동일하게 7.2%의 결과를 얻었다.