광학 위성영상은 국가 보안 및 정보 획득을 목적으로 사용되며 그 활용성은 증가하고 있다. 그러나, 기상 조건 및 시간의 제약으로 사용자의 요구에 적합하지 않은 저품질의 영상을 획득하게 된다. 본 논문에서는 광학 위성영상의 구름 폐색영역을 모의하기 위하여 고해상도 SAR 영상을 참조한 딥러닝 기반의 영상변환 및 컬러화 모델을 생성하였다. 해당 모델은 적용 알고리즘 및 입력 데이터 형태에 따라 실험하였으며 생성된 모의영상을 비교 분석하였다. 특히 입력하는 흑백영상과 SAR 영상간의 화소값 정보량이 유사하도록 하여 상대적으로 색상정보량 부족에서 오는 문제점을 개선하였다. 실험 결과, Gray-scale 영상과 고해상도 SAR 영상으로 학습한 모의영상의 히스토그램 분포가 비교적 원 영상과 유사하였고, 정량적인 분석을 위하여 산정한 RMSE 값은 약 6.9827, PSNR 값은 약 31.3960으로 나타났다.
본 논문에서는 중소형 매장에서 판매 상품 진열대를 모니터링할 수 있는 소형 카메라를 이용해 진열 상품에 대한 재고 관리 및 도난 방지 기능을 제공할 수 있는 무인 매장 관리 시스템을 제시한다. 이 시스템은 객체 인식, 실시간 통신, 보안 관리, 출입 관리, 그리고 모바일 인증을 종합적으로 통합한 서비스 솔루션이다. 제안 시스템은 소형 카메라를 통해 실시간으로 촬영되고 있는 영상을 커스텀 YOLOv5-x 모델을 활용하여 진열대의 물체를 인식하고 수량을 실시간 측정하며, 라즈베리파이를 통해 서버와의 실시간 데이터 통신을 지원한다. 또한, 데이터베이스 내 객체 수량과 객체 인식 결과를 비교하여 도난 의심 상황을 탐지하고 도난 발생 시점의 매장 영상을 제공한다. 제안된 무인 매장 솔루션은 중소형 무인 매장 운영의 효율성을 향상시키고 도난을 대응하는데 기여할 수 있을 것으로 기대된다.
COVID-19 이후 온라인을 통한 소통이 증가하여 다양한 플랫폼을 기반으로 소통을 위한 대화 텍스트 데이터가 대량으로 축적되고 있다. 텍스트 데이터로부터 유의미한 정보를 추출하기 위한 텍스트 요약에 대한 중요성이 더욱 증가함에 따라 딥러닝을 활용한 추상 요약 연구가 활발하게 이루어지고 있다. 그러나 대화 데이터는 뉴스 기사와 같은 정형화된 텍스트에 비해 누락 및 변형이 많아 대화 상황을 다양한 관점에서 고려해야 하는 특이성이 있다. 특히 어휘 생략과 동시에 내용과 관련 없는 표현 요소들이 대화의 내용을 요약하는 데 방해가 된다. 그러므로 본 연구에서는 한국어 대화 데이터의 특성을 고려하여 발화문을 재구조화하고 KoBART 기반의 사전학습된 텍스트 요약 모델을 파인 튜닝후, 요약문에서 중복 요소를 제거하는 정제 작업을 통해 대화 데이터 요약 성능을 향상시키고자 한다. 발화문을 재구조화하는 방법으로는 발화 순서에 따라 재구조화는 방법과 중심 발화자를 기준으로 재구조화하는 방법을 결합하였다. 대화문 재구조화 방법을 적용한 결과, Rouge-1 점수가 4 정도 향상되었다. 본 연구의 대화 특성을 고려한 재구조화 방법이 한국어 대화 요약 성능 향상에 유의미함을 입증하였다.
얼굴 인식 기술은 다양한 분야에서 활용되고 있지만, 이는 사진 스푸핑과 같은 위조 공격에 취약하다는 문제를 가지고 있다. 이를 극복하기 위한 여러 연구가 진행되고 있지만, 대부분은 멀티모달 카메라와 같은 특별한 장비를 장착하거나 고성능 환경에서 동작하는 것을 전제로 하고 있다. 본 연구는 얼굴 인식 위조 공격 문제를 해결하기 위해, 특별한 장비 없이 일반적인 웹캠에서 동작할 수 있는 LH-FAS v2를 제안한다. 제안된 방법에서는, 머리 자세 추정에는 FSA-Net을, 얼굴 식별에는 ArcFace를 활용하여 사진 스푸핑 여부를 판별한다. 실험을 위해, 사진 스푸핑 공격 비디오로 구성된 VD4PS 데이터셋을 제시하였으며, 이를 통해 LH-FAS v2의 균형 잡힌 정확도와 속도를 확인하였다. 본 방법은 향후 사진 스푸핑 방어에 효과적일 것으로 기대한다.
During fast neutron imaging, besides the dark current noise and readout noise of the CCD camera, the main noise in fast neutron imaging comes from high-energy gamma rays generated by neutron nuclear reactions in and around the experimental setup. These high-energy gamma rays result in the presence of high-density gamma white spots (GWS) in the fast neutron image. Due to the microscopic quantum characteristics of the neutron beam itself and environmental scattering effects, fast neutron images typically exhibit a mixture of Gaussian noise. Existing denoising methods in neutron images are difficult to handle when dealing with a mixture of GWS and Gaussian noise. Herein we put forward a deep learning approach based on the Swin Transformer UNet (SUNet) model to remove high-density GWS-Gaussian mixture noise from fast neutron images. The improved denoising model utilizes a customized loss function for training, which combines perceptual loss and mean squared error loss to avoid grid-like artifacts caused by using a single perceptual loss. To address the high cost of acquiring real fast neutron images, this study introduces Monte Carlo method to simulate noise data with GWS characteristics by computing the interaction between gamma rays and sensors based on the principle of GWS generation. Ultimately, the experimental scenarios involving simulated neutron noise images and real fast neutron images demonstrate that the proposed method not only improves the quality and signal-to-noise ratio of fast neutron images but also preserves the details of the original images during denoising.
Ye Jun Lee;Yong Kuk Kim;Da Young Kim;Jeongtack Min;Min-Kyu Kim
한국컴퓨터정보학회논문지
/
제29권8호
/
pp.43-51
/
2024
본 논문은 수중 활동을 주로 하는 다이버를 대상으로 특수 목적용 다이버 마스크를 이용해서 안구 데이터를 획득 및 분석하고, 이를 이용해서 사용자의 시선을 추적하는 방법에 대해 제안한다. 안구 데이터 분석을 위해 자체 제작한 안구 데이터 셋을 구축하였고, YOLOv8-nano 모델을 활용해서 학습 모델을 생성하였다. 학습 모델의 프레임 당 소요 시간은 평균 45.52ms를 달성하였고, 눈을 뜬 상태와 감는 상태를 구별하는 인식 성공률은 99%를 달성하였다. 안구 데이터 분석 결과를 바탕으로 현실 세계 좌표를 매칭할 수 있는 시선 추적 알고리즘을 개발하였다. 이 알고리즘의 검증 결과 x축은 약 1%, y축은 약 6%의 평균 오차율을 나타내는 것을 알 수 있었다.
최근의 감시 시스템은 카메라, 레이더 등 다양한 센서를 중복 사용하여 침입 탐지의 정확도를 향상시키려는 노력을 기울이고 있다. 그러나 야간, 악천후, 침입자의 위장 등으로 인해 카메라(RGB, Thermal) 센서를 통한 객체 인식이 정확하지 않을 때도 있다. 이러한 상황에서는 카메라나 레이더 센서를 통해 추출된 객체의 궤적을 활용하여 침입자를 탐지할 수 있다. 본 논문에서는 객체 인식이 어려운 환경에서 궤적 정보만을 이용하여 침입자를 탐지하는 방법을 제안한다. 제안하는 방법은 동물, 사람의 정상 및 비정상(침입, 배회) 궤적 데이터를 이용하여 LSTM-Attention 기반 궤적 분류 모델을 학습하고, 이 모델을 이용해서 사람의 비정상 궤적을 찾아내서 침입 탐지를 수행한다. 마지막으로, 제안하는 방법의 타당성을 실 데이터를 이용한 실험을 통해 입증한다.
본 논문에서는 피부병변 영상에서 이미지 분할 성능을 향상시키기 위해 설계된 딥러닝 모델인 VmCUnet을 제안한다. VmCUnet은 Vm-UnetV2와 CIM(Cross-Scale Interaction Module)을 결합하여 인코더의 각 계층에서 추출한 특징들을 CIM으로 통합하여 다양한 패턴과 경계를 정확하게 인식할 수 있다. VmCUnet은 ISIC-2017와 ISIC-2018 데이터 세트를 사용하여 피부 병변의 이미지 분할을 수행하였고 Unet, TransUnet, SwinUnet Vm-Unet, Vm-UnetV2와 비교하여 성능 지표인 IoU, Dice Score에서 더 높은 성능을 보였다. 향후 작업에서는 다양한 의료 영상 데이터 세트에 대한 추가 실험을 수행하여 VmCUnet 모델의 일반화 성능을 검증할 예정이다.
고해상도 심층신경망을 이용하여 기상데이터를 초해상화하면 보다 더 정밀한 연구와 실생활에 유용한 서비스를 제공할 수 있다. 본 논문에서는 고해상도 심층신경망 학습에 사용하기 위한 개선된 훈련자료 생산기술을 최초로 제안한다. 기상전문 지식으로 고해상도 기상 자료를 생성하기 위해, 전문 기관의 관측자료와 ERA5 재분석장 자료를 바탕으로 람베르트 정각원추도법과 객관분석을 적용했다. 그 결과, 기상 전문 지식 기반의 기온 및 습도 분석자료는 기존 배경장 대비 RMSE 값이 각각 최대 42%, 46% 개선되었다. 다음으로, 기상 전문 기술을 이용한 수동적인 데이터 생성 기법을 자동화하기 위해 인공지능 기술 중 하나인 SRGAN을 이용했고, 10 km 해상도를 가지는 전지구모델자료로부터 1 km 해상도를 가지는 고해상도 자료를 생성하는 실험을 진행했다. 최종적으로, SRGAN으로 생성한 결과는 전지구모델입력자료에 비해 높은 해상도를 가지며 수동으로 생성한 고해상도 분석자료와 유사한 분석 패턴을 보이면서도 부드러운 경계를 보였다.
이 연구에서는 국내 연안어장을 대상으로 조식동물 및 서식지에 대한 수중영상 기반의 인공지능 학습자료를 구축하고, state-of-the-art (SOTA) 모델인 High Resolution Network-Object Contextual Representation(HRNet-OCR)과 Shifted Windows-L (Swin-L)을 이용하여, 조식동물 서식지 수중영상의 의미론적 분할을 수행함으로써 화소 또는 화소군 간의 공간적 맥락(상관성)을 반영하는 보다 실제적인 탐지 결과를 제시하였다. 조식동물 서식지인 감태, 모자반의 수중영상 레이블 중 1,390장을 셔플링(shuffling)하여 시험평가를 수행한 결과, 한국수산자원공단의 DeepLabV3+ 사례에 비해 약 29% 향상된 정확도를 도출하였다. 모든 클래스에 대해 Swin-L이 HRNet-OCR보다 판별율이 더 좋게 나타났으며, 특히 데이터가 적은 감태의 경우, Swin-L이 해당 클래스에 대한 특징을 더 풍부하게 반영할 수 있는 것으로 나타났다. 영상분할 결과 대상물과 배경이 정교하게 분리되는 것을 확인되었는데, 이는 Transformer 계열 백본을 활용하면서 특징 추출능력이 더욱 향상된 것으로 보인다. 향후 10,000장의 레이블 데이터베이스가 완성되면 추가적인 정확도 향상이 가능할 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.