• 제목/요약/키워드: Deep Learning Model

검색결과 2,840건 처리시간 0.028초

GAN을 이용한 흑백영상과 위성 SAR 영상간의 모의 및 컬러화 (Simulation and Colorization between Gray-scale Images and Satellite SAR Images Using GAN)

  • 조수민;허준혁;어양담
    • 대한토목학회논문집
    • /
    • 제44권1호
    • /
    • pp.125-132
    • /
    • 2024
  • 광학 위성영상은 국가 보안 및 정보 획득을 목적으로 사용되며 그 활용성은 증가하고 있다. 그러나, 기상 조건 및 시간의 제약으로 사용자의 요구에 적합하지 않은 저품질의 영상을 획득하게 된다. 본 논문에서는 광학 위성영상의 구름 폐색영역을 모의하기 위하여 고해상도 SAR 영상을 참조한 딥러닝 기반의 영상변환 및 컬러화 모델을 생성하였다. 해당 모델은 적용 알고리즘 및 입력 데이터 형태에 따라 실험하였으며 생성된 모의영상을 비교 분석하였다. 특히 입력하는 흑백영상과 SAR 영상간의 화소값 정보량이 유사하도록 하여 상대적으로 색상정보량 부족에서 오는 문제점을 개선하였다. 실험 결과, Gray-scale 영상과 고해상도 SAR 영상으로 학습한 모의영상의 히스토그램 분포가 비교적 원 영상과 유사하였고, 정량적인 분석을 위하여 산정한 RMSE 값은 약 6.9827, PSNR 값은 약 31.3960으로 나타났다.

재고 관리 및 도난 방지를 위한 영상분석 기반 무인 매장 관리 시스템 (Video-based Inventory Management and Theft Prevention for Unmanned Stores)

  • 이수진;문지영;박해인;강지헌
    • 한국산업정보학회논문지
    • /
    • 제29권1호
    • /
    • pp.77-89
    • /
    • 2024
  • 본 논문에서는 중소형 매장에서 판매 상품 진열대를 모니터링할 수 있는 소형 카메라를 이용해 진열 상품에 대한 재고 관리 및 도난 방지 기능을 제공할 수 있는 무인 매장 관리 시스템을 제시한다. 이 시스템은 객체 인식, 실시간 통신, 보안 관리, 출입 관리, 그리고 모바일 인증을 종합적으로 통합한 서비스 솔루션이다. 제안 시스템은 소형 카메라를 통해 실시간으로 촬영되고 있는 영상을 커스텀 YOLOv5-x 모델을 활용하여 진열대의 물체를 인식하고 수량을 실시간 측정하며, 라즈베리파이를 통해 서버와의 실시간 데이터 통신을 지원한다. 또한, 데이터베이스 내 객체 수량과 객체 인식 결과를 비교하여 도난 의심 상황을 탐지하고 도난 발생 시점의 매장 영상을 제공한다. 제안된 무인 매장 솔루션은 중소형 무인 매장 운영의 효율성을 향상시키고 도난을 대응하는데 기여할 수 있을 것으로 기대된다.

대화문 재구조화를 통한 한국어 대화문 요약 (Summarization of Korean Dialogues through Dialogue Restructuring)

  • 김은희;임명진;신주현
    • 스마트미디어저널
    • /
    • 제12권11호
    • /
    • pp.77-85
    • /
    • 2023
  • COVID-19 이후 온라인을 통한 소통이 증가하여 다양한 플랫폼을 기반으로 소통을 위한 대화 텍스트 데이터가 대량으로 축적되고 있다. 텍스트 데이터로부터 유의미한 정보를 추출하기 위한 텍스트 요약에 대한 중요성이 더욱 증가함에 따라 딥러닝을 활용한 추상 요약 연구가 활발하게 이루어지고 있다. 그러나 대화 데이터는 뉴스 기사와 같은 정형화된 텍스트에 비해 누락 및 변형이 많아 대화 상황을 다양한 관점에서 고려해야 하는 특이성이 있다. 특히 어휘 생략과 동시에 내용과 관련 없는 표현 요소들이 대화의 내용을 요약하는 데 방해가 된다. 그러므로 본 연구에서는 한국어 대화 데이터의 특성을 고려하여 발화문을 재구조화하고 KoBART 기반의 사전학습된 텍스트 요약 모델을 파인 튜닝후, 요약문에서 중복 요소를 제거하는 정제 작업을 통해 대화 데이터 요약 성능을 향상시키고자 한다. 발화문을 재구조화하는 방법으로는 발화 순서에 따라 재구조화는 방법과 중심 발화자를 기준으로 재구조화하는 방법을 결합하였다. 대화문 재구조화 방법을 적용한 결과, Rouge-1 점수가 4 정도 향상되었다. 본 연구의 대화 특성을 고려한 재구조화 방법이 한국어 대화 요약 성능 향상에 유의미함을 입증하였다.

LH-FAS v2: 머리 자세 추정 기반 경량 얼굴 위조 방지 기술 (LH-FAS v2: Head Pose Estimation-Based Lightweight Face Anti-Spoofing)

  • 허현범;양혜리;정성욱;이경재
    • 한국전자통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.309-316
    • /
    • 2024
  • 얼굴 인식 기술은 다양한 분야에서 활용되고 있지만, 이는 사진 스푸핑과 같은 위조 공격에 취약하다는 문제를 가지고 있다. 이를 극복하기 위한 여러 연구가 진행되고 있지만, 대부분은 멀티모달 카메라와 같은 특별한 장비를 장착하거나 고성능 환경에서 동작하는 것을 전제로 하고 있다. 본 연구는 얼굴 인식 위조 공격 문제를 해결하기 위해, 특별한 장비 없이 일반적인 웹캠에서 동작할 수 있는 LH-FAS v2를 제안한다. 제안된 방법에서는, 머리 자세 추정에는 FSA-Net을, 얼굴 식별에는 ArcFace를 활용하여 사진 스푸핑 여부를 판별한다. 실험을 위해, 사진 스푸핑 공격 비디오로 구성된 VD4PS 데이터셋을 제시하였으며, 이를 통해 LH-FAS v2의 균형 잡힌 정확도와 속도를 확인하였다. 본 방법은 향후 사진 스푸핑 방어에 효과적일 것으로 기대한다.

A high-density gamma white spots-Gaussian mixture noise removal method for neutron images denoising based on Swin Transformer UNet and Monte Carlo calculation

  • Di Zhang;Guomin Sun;Zihui Yang;Jie Yu
    • Nuclear Engineering and Technology
    • /
    • 제56권2호
    • /
    • pp.715-727
    • /
    • 2024
  • During fast neutron imaging, besides the dark current noise and readout noise of the CCD camera, the main noise in fast neutron imaging comes from high-energy gamma rays generated by neutron nuclear reactions in and around the experimental setup. These high-energy gamma rays result in the presence of high-density gamma white spots (GWS) in the fast neutron image. Due to the microscopic quantum characteristics of the neutron beam itself and environmental scattering effects, fast neutron images typically exhibit a mixture of Gaussian noise. Existing denoising methods in neutron images are difficult to handle when dealing with a mixture of GWS and Gaussian noise. Herein we put forward a deep learning approach based on the Swin Transformer UNet (SUNet) model to remove high-density GWS-Gaussian mixture noise from fast neutron images. The improved denoising model utilizes a customized loss function for training, which combines perceptual loss and mean squared error loss to avoid grid-like artifacts caused by using a single perceptual loss. To address the high cost of acquiring real fast neutron images, this study introduces Monte Carlo method to simulate noise data with GWS characteristics by computing the interaction between gamma rays and sensors based on the principle of GWS generation. Ultimately, the experimental scenarios involving simulated neutron noise images and real fast neutron images demonstrate that the proposed method not only improves the quality and signal-to-noise ratio of fast neutron images but also preserves the details of the original images during denoising.

Research on Ocular Data Analysis and Eye Tracking in Divers

  • Ye Jun Lee;Yong Kuk Kim;Da Young Kim;Jeongtack Min;Min-Kyu Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권8호
    • /
    • pp.43-51
    • /
    • 2024
  • 본 논문은 수중 활동을 주로 하는 다이버를 대상으로 특수 목적용 다이버 마스크를 이용해서 안구 데이터를 획득 및 분석하고, 이를 이용해서 사용자의 시선을 추적하는 방법에 대해 제안한다. 안구 데이터 분석을 위해 자체 제작한 안구 데이터 셋을 구축하였고, YOLOv8-nano 모델을 활용해서 학습 모델을 생성하였다. 학습 모델의 프레임 당 소요 시간은 평균 45.52ms를 달성하였고, 눈을 뜬 상태와 감는 상태를 구별하는 인식 성공률은 99%를 달성하였다. 안구 데이터 분석 결과를 바탕으로 현실 세계 좌표를 매칭할 수 있는 시선 추적 알고리즘을 개발하였다. 이 알고리즘의 검증 결과 x축은 약 1%, y축은 약 6%의 평균 오차율을 나타내는 것을 알 수 있었다.

감시 시스템에서 궤적 분류를 이용한 이상 탐지 방법 (Anomaly Detection Method Based on Trajectory Classification in Surveillance Systems)

  • 서정훈;황지인;팔 아비쉑;이하은;고대식;송석일
    • Journal of Platform Technology
    • /
    • 제12권3호
    • /
    • pp.62-70
    • /
    • 2024
  • 최근의 감시 시스템은 카메라, 레이더 등 다양한 센서를 중복 사용하여 침입 탐지의 정확도를 향상시키려는 노력을 기울이고 있다. 그러나 야간, 악천후, 침입자의 위장 등으로 인해 카메라(RGB, Thermal) 센서를 통한 객체 인식이 정확하지 않을 때도 있다. 이러한 상황에서는 카메라나 레이더 센서를 통해 추출된 객체의 궤적을 활용하여 침입자를 탐지할 수 있다. 본 논문에서는 객체 인식이 어려운 환경에서 궤적 정보만을 이용하여 침입자를 탐지하는 방법을 제안한다. 제안하는 방법은 동물, 사람의 정상 및 비정상(침입, 배회) 궤적 데이터를 이용하여 LSTM-Attention 기반 궤적 분류 모델을 학습하고, 이 모델을 이용해서 사람의 비정상 궤적을 찾아내서 침입 탐지를 수행한다. 마지막으로, 제안하는 방법의 타당성을 실 데이터를 이용한 실험을 통해 입증한다.

  • PDF

피부병변 영상 분할의 성능향상을 위한 VmCUnet (VmCUnet for Improving the Performance of Skin lesion Image Segmentation)

  • 김홍진;이태희;황우성;최명렬
    • 전기전자학회논문지
    • /
    • 제28권3호
    • /
    • pp.405-411
    • /
    • 2024
  • 본 논문에서는 피부병변 영상에서 이미지 분할 성능을 향상시키기 위해 설계된 딥러닝 모델인 VmCUnet을 제안한다. VmCUnet은 Vm-UnetV2와 CIM(Cross-Scale Interaction Module)을 결합하여 인코더의 각 계층에서 추출한 특징들을 CIM으로 통합하여 다양한 패턴과 경계를 정확하게 인식할 수 있다. VmCUnet은 ISIC-2017와 ISIC-2018 데이터 세트를 사용하여 피부 병변의 이미지 분할을 수행하였고 Unet, TransUnet, SwinUnet Vm-Unet, Vm-UnetV2와 비교하여 성능 지표인 IoU, Dice Score에서 더 높은 성능을 보였다. 향후 작업에서는 다양한 의료 영상 데이터 세트에 대한 추가 실험을 수행하여 VmCUnet 모델의 일반화 성능을 검증할 예정이다.

기상 자료 초해상화를 위한 인공지능 기술과 기상 전문 지식의 융합 (Convergence of Artificial Intelligence Techniques and Domain Specific Knowledge for Generating Super-Resolution Meteorological Data)

  • 하지훈;박건우;임효혁;조동희;김용혁
    • 한국융합학회논문지
    • /
    • 제12권10호
    • /
    • pp.63-70
    • /
    • 2021
  • 고해상도 심층신경망을 이용하여 기상데이터를 초해상화하면 보다 더 정밀한 연구와 실생활에 유용한 서비스를 제공할 수 있다. 본 논문에서는 고해상도 심층신경망 학습에 사용하기 위한 개선된 훈련자료 생산기술을 최초로 제안한다. 기상전문 지식으로 고해상도 기상 자료를 생성하기 위해, 전문 기관의 관측자료와 ERA5 재분석장 자료를 바탕으로 람베르트 정각원추도법과 객관분석을 적용했다. 그 결과, 기상 전문 지식 기반의 기온 및 습도 분석자료는 기존 배경장 대비 RMSE 값이 각각 최대 42%, 46% 개선되었다. 다음으로, 기상 전문 기술을 이용한 수동적인 데이터 생성 기법을 자동화하기 위해 인공지능 기술 중 하나인 SRGAN을 이용했고, 10 km 해상도를 가지는 전지구모델자료로부터 1 km 해상도를 가지는 고해상도 자료를 생성하는 실험을 진행했다. 최종적으로, SRGAN으로 생성한 결과는 전지구모델입력자료에 비해 높은 해상도를 가지며 수동으로 생성한 고해상도 분석자료와 유사한 분석 패턴을 보이면서도 부드러운 경계를 보였다.

HRNet-OCR과 Swin-L 모델을 이용한 조식동물 서식지 수중영상의 의미론적 분할 (Semantic Segmentation of the Habitats of Ecklonia Cava and Sargassum in Undersea Images Using HRNet-OCR and Swin-L Models)

  • 김형우;장선웅;박수호;공신우;곽지우;김진수;이양원
    • 대한원격탐사학회지
    • /
    • 제38권5_3호
    • /
    • pp.913-924
    • /
    • 2022
  • 이 연구에서는 국내 연안어장을 대상으로 조식동물 및 서식지에 대한 수중영상 기반의 인공지능 학습자료를 구축하고, state-of-the-art (SOTA) 모델인 High Resolution Network-Object Contextual Representation(HRNet-OCR)과 Shifted Windows-L (Swin-L)을 이용하여, 조식동물 서식지 수중영상의 의미론적 분할을 수행함으로써 화소 또는 화소군 간의 공간적 맥락(상관성)을 반영하는 보다 실제적인 탐지 결과를 제시하였다. 조식동물 서식지인 감태, 모자반의 수중영상 레이블 중 1,390장을 셔플링(shuffling)하여 시험평가를 수행한 결과, 한국수산자원공단의 DeepLabV3+ 사례에 비해 약 29% 향상된 정확도를 도출하였다. 모든 클래스에 대해 Swin-L이 HRNet-OCR보다 판별율이 더 좋게 나타났으며, 특히 데이터가 적은 감태의 경우, Swin-L이 해당 클래스에 대한 특징을 더 풍부하게 반영할 수 있는 것으로 나타났다. 영상분할 결과 대상물과 배경이 정교하게 분리되는 것을 확인되었는데, 이는 Transformer 계열 백본을 활용하면서 특징 추출능력이 더욱 향상된 것으로 보인다. 향후 10,000장의 레이블 데이터베이스가 완성되면 추가적인 정확도 향상이 가능할 것으로 기대된다.