수십년간 매우 많은 소프트웨어 결함 예측 모델에 관한 연구들이 수행되었으며, 그들 중 기계학습 기법을 사용한 모델들이 가장 좋은 성능을 보였다. 딥러닝 기법은 기계학습 분야에서 가장 각광받는 기술이 되었지만 결함 예측 모델의 분류기로 사용된 연구는 거의 없었다. 몇몇 연구들은 모델의 입력 소스나 구문 데이터로부터 시맨틱 정보를 얻어내는데 딥러닝을 사용하였다. 본 논문은 3개 이상의 은닉층을 갖는 MLP를 이용하여 모델 구조와 하이퍼 파라미터를 변경하여 여러 모델들을 제작하였다. 모델 평가 실험 결과 MLP 기반 딥러닝 모델들은 기존 결함 예측 모델들과 Accuracy는 비슷한 성능을 보였으나 AUC는 유의미하게 더 우수한 성능을 보였다. 또한 또다른 딥러닝 모델인 CNN 모델보다도 더 나은 성능을 보였다.
After CNN basic structure was introduced by LeCun in 1989, there has not been a major structure change except for more deep network until recently. The deep network enhances the expression power due to improve the abstraction ability of the network, and can learn complex problems by increasing non linearity. However, the learning of a deep network means that it has vanishing gradient or longer learning time. In this study, we proposes a CNN structure with MLP layer. The proposed CNNs are superior to the general CNN in their classification performance. It is confirmed that classification accuracy is high due to include MLP layer which improves non linearity by experiment. In order to increase the performance without making a deep network, it is confirmed that the performance is improved by increasing the non linearity of the network.
Journal of Information Technology Applications and Management
/
제29권3호
/
pp.43-55
/
2022
In this study, with the goal of developing a deep learning-based product recommendation model for effective matching of influencers and products, a deep learning model with a collaborative filtering model combined with generalized matrix decomposition(GMF), a collaborative filtering model based on multi-layer perceptron (MLP), and neural collaborative filtering and generalized matrix Factorization (NeuMF), a hybrid model combining GMP and MLP was developed and tested. In particular, we utilize one-class problem free boosting (OCF-B) method to solve the one-class problem that occurs when training is performed only on positive cases using implicit feedback in the deep learning-based collaborative filtering recommendation model. In relation to model selection based on overall experimental results, the MLP model showed highest performance with weighted average precision, weighted average recall, and f1 score were 0.85 in the model (n=3,000, term=15). This study is meaningful in practice as it attempted to commercialize a deep learning-based recommendation system where influencer's promotion data is being accumulated, pactical personalized recommendation service is not yet commercially applied yet.
소프트웨어 결함 예측 작업 시 단순히 결함 유무만을 예측하는 이진 분류 모델에 비해 결함의 심각도 범주를 예측하는 다중 분류 모델은 훨씬 유용하게 사용될 수 있다. 소수의 심각도 기반 결함 예측 모델들이 제안되었지만 딥러닝 기법을 사용한 분류기는 없었다. 본 논문은 3개, 5개의 은닉층을 갖고 은닉층 노드수가 고정된 구조와 변화하는 구조의 MLP 모델들을 제작하였다. 모델 평가 실험 결과 기존 기계학습 모델들 중 가장 좋은 성능을 보인 MLPs보다 MLP 기반 딥러닝 모델들은 Accuracy와 AUC 모두 유의미하게 더 우수한 성능을 보였다. 특히 노드수 고정 구조에서는 은닉 층수 3, 배치사이즈 32, 노드수 64인 모델 구조가 가장 좋은 성능을 보였다.
본 연구에서는 딥러닝을 이용한 모형을 이용해서 우리나라 지역에 대한 서리 발생 예측 모형을 구축하였다. 딥러닝 모형의 학습 데이터로 다양한 기상인자들(최저기온, 풍속, 상대습도, 구름량, 강수량)을 사용하였으며, 기상인자들에 대한 통계적 분석 결과, 서리가 발생한 날과 서리가 발생하지 않은 날에 대해 각 요소별로 유의한 차이가 있는 것을 볼 수 있었다. 단일 딥러닝 모형 3가지와 다중 입력 딥러닝 모형 3가지를 이용하여 서리발생을 추정한 결과, 평균적으로 MLP가 가장 정확도가 낮았으며, LSTM, GRU 순으로 정확도가 높게 나타났고, 다중 입력 딥러닝 모형의 경우 3가지 모형이 거의 비슷한 결과가 나타났지만 그 중 평균적으로 GRU와 MLP를 이용한 모형이 가장 정확도가 높았다. 또한, 단일 딥러닝이 다중 입력 딥러닝에 비해 샘플에 따라 정확도 편차도 더 컸다. 이에 따라 결과적으로 단일 딥러닝 기반의 서리발생 예측 모형보다 다중 입력 딥러닝 기반의 서리발생 예측 모형이 안정성과 정확도와 재현율 측면에서 다소 우수한 것을 확인할 수 있었다.
"Protein Folding Problem" is considered to be one of the "Great Challenges of Computer Science" and prediction of disordered protein is an important part of the protein folding problem. Machine learning models can predict the disordered structure of protein based on its characteristic of "learning from examples". Among many machine learning models, we investigate the possibility of multilayer perceptron (MLP) as the predictor of protein disorder. The investigation includes a single hidden layer MLP, multi hidden layer MLP and the hierarchical structure of MLP. Also, the target node cost function which deals with imbalanced data is used as training criteria of MLPs. Based on the investigation results, we insist that MLP should have deep architectures for performance improvement of protein disorder prediction.
본 논문은 딥러닝 알고리즘을 적용한 깊은신경망을 이용하여 회전 객체의 분류 효율성을 높이기 위한 연구이다. 회전객체의 분류 실험을 위하여 데이터는 COIL-20을 사용하며 객체의 2/3영역을 학습시키고 1/3영역을 유추하여 분류한다. 연구에 이용된 3가지 분류기는 주성분 분석법을 이용해 데이터의 차원을 축소하면서 특징값을 추출하고 유클리디안 거리를 이용하여 분류하는 PCA분류기와 오류역전파 알고리즘을 이용하여 오류 에너지를 줄여가는 방식의 MLP분류기, 마지막으로 pre-training을 통하여 학습데이터의 관찰될 확률을 높여주고 fine-tuning으로 오류에너지를 줄여가는 방식의 딥러닝을 적용한 DBN분류기이다. 깊은신경망의 구조별 오류율을 확인하기 위하여 은닉층의 개수와 은닉뉴런의 개수를 변경해가며 실험하고 실제로 가장 낮은 오류율을 나타내는 구조를 기술한다. 가장 낮은 오류율을 보였던 분류기는 DBN을 이용한 분류기이다. 은닉층을 2개 갖는 깊은신경망의 구조로 매개 변수들을 인식에 도움이 되는 곳으로 이동 시켜 높은 인식률을 보여줬다.
Background: In this study, various types of deep-learning models for predicting in vitro radiosensitivity from gene-expression profiling were compared. Methods: The clonogenic surviving fractions at 2 Gy from previous publications and microarray gene-expression data from the National Cancer Institute-60 cell lines were used to measure the radiosensitivity. Seven different prediction models including three distinct multi-layered perceptrons (MLP), four different convolutional neural networks (CNN) were compared. Folded cross-validation was applied to train and evaluate model performance. The criteria for correct prediction were absolute error < 0.02 or relative error < 10%. The models were compared in terms of prediction accuracy, training time per epoch, training fluctuations, and required calculation resources. Results: The strength of MLP-based models was their fast initial convergence and short training time per epoch. They represented significantly different prediction accuracy depending on the model configuration. The CNN-based models showed relatively high prediction accuracy, low training fluctuations, and a relatively small increase in the memory requirement as the model deepens. Conclusion: Our findings suggest that a CNN-based model with moderate depth would be appropriate when the prediction accuracy is important, and a shallow MLP-based model can be recommended when either the training resources or time are limited.
As sputter equipment becomes more complex, it becomes increasingly difficult to understand the parameters that affect the thickness uniformity of thin metal film deposited by sputter. To address this issue, we verified a deep learning model that can predict complex relationships. Specifically, we trained the model to predict the height of 36 magnets based on the thickness of the material, using Support Vector Machine (SVM), Multilayer Perceptron (MLP), 1D-Convolutional Neural Network (1D-CNN), and 2D-Convolutional Neural Network (2D-CNN) algorithms. After evaluating each model, we found that the MLP model exhibited the best performance, especially when the dataset was constructed regardless of the thin film material. In conclusion, our study suggests that it is possible to predict the sputter equipment source using film thickness data through a deep learning model, which makes it easier to understand the relationship between film thickness and sputter equipment.
수중 IoT 네트워크에서 센서 노드는 지속적인 전력 공급이 어렵기 때문에 제한된 상황에서 소비 전력과 네트워크 처리량의 효율성이 매우 중요하다. 이를 위해 기존의 무선 네트워크에서는 SNR(Signal Noise Rate)과 BER(Bit Error Rate)의 높은 연관성을 기반으로 적응적으로 통신 파라미터를 선택하는 AMC(Adaptive Modulation and Coding) 기술을 적용한다. 하지만 본 논문의 실험 결과, 수중에서 SNR과 BER 사이의 상관 관계가 상대적으로 감소함을 확인하였다. 따라서 본 논문에서는 SNR과 함께 다중 파라미터를 동시에 사용하는 딥러닝 기반 BER 예측 모델(MLP, Multi-Layer Perceptron)을 적용한다. 제안하는 BER 예측 모델은 처리량이 가장 높은 통신 방법을 찾아낼 수 있고, 시뮬레이션 결과 85.2%의 높은 정확도와 네트워크 처리량은 기존 처리량보다 4.4배 높은 성능을 보여주는 우수한 성능을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.