• Title/Summary/Keyword: Deep Heat

Search Result 367, Processing Time 0.027 seconds

A study on Applications of prescriptions including Radix Angelicae Dahuricae as a main component in Donguibogam (동의보감(東醫寶鑑) 중(中) 백지(白芷)가 주약(主藥)으로 배오(配伍)된 방제(方劑)의 활용(活用)에 대한 고찰(考察))

  • Lee, Sung-Jun;Jang, Sean-Il;Yun, Young-Gab
    • Herbal Formula Science
    • /
    • v.15 no.2
    • /
    • pp.47-64
    • /
    • 2007
  • This report describes 94 prescriptions related to the use of Radix Angelicae Dahuricae main bl ended from Donguibogam. The following conclusions were reached through investigations on the prescriptions that use Radix Angelicae Dahuricae as a key component. 11.7% of wind. 10.6% of carbuncle and deep-rooted carbuncle. recorded the largest number of clinical frequency of the prescriptions in therapeutic use when Radix Angelicae Dahuricae was ta ken as a monarch drug in prescriptions, Prescriptions that utilize Radix Angelicae Dahuricae as t he main component are used in the treatment of apoplexy and carbuncle and deep-rooted carbuncle. headache. wound and they are also used for treating 26 different types of diseases. The prescriptions are compounded with Radix Angelicae Dahuricae as a monarch drug can ap ply to apoplexy, exogenous febrile disease, invasion by wind. wind-cold pathogen, wind-heat path ogen. epidemic disease, pestilence. bruise, bites, deficiency of liver and kidney, deficiency, phlegm-fire, phlegm-heat. The dosage of Radix Angelicae Dahuricae is 0.37g to 7.5g, however 3.75g has be en taken the most for clinical application. The function of Radix Angelicae Dahuricae is to expelling Wind and relieving pain, to expelling wound and forming muscle. to astrict and neutralizing poison. to expelling wind and to getting through body hole. to emit and relieving pain from the combination of drugs and prescriptions.

  • PDF

Case Study of Microseismic Management Systems for Basel EGS Project (Basel EGS Project의 미소진동관리 사례연구)

  • Lee, Sangdon
    • Tunnel and Underground Space
    • /
    • v.23 no.6
    • /
    • pp.572-580
    • /
    • 2013
  • In this case study, I examined the microseismic safety management system of Deep Heat Mining Basel (DHMB) as EGS Geothermal Project which was conducted in Basel, Switzerland. EGS Geothermal Power projects which require induced seismic event by stimulation for creation of EGS geothermal reservoir have to be controlled pressure and flow rate of stimulation by establishment of microseismic safety management system. Traffic light system and Communication response procedure of DHMB project to respond step by step corresponding microseismic event intensity through continuous monitoring during stimulation period have been managed and established in advance of stimulation. However, the project was discontinued because of an earthquake to occur larger than expected one due to post-injection seismicity occurring in the geothermal reservoir after completion of injection for stimulation. The result of post analysis, Real-time traffic light system was verified to need a establishment of new microseismic safe management system to be considered post-injection seismicity phenomenon.

Analysis of suppressed thermal conductivity using multiple nanoparticle layers (다중층 나노구조체를 통한 열차단 특성 제어)

  • Tae Ho Noh;Ee Le Shim
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.4
    • /
    • pp.233-242
    • /
    • 2023
  • In recent years, energy-management studies in buildings have proven useful for energy savings. Typically, during heating and cooling, the energy from a given building is lost through its windows. Generally, to block the entry of ultraviolet (UV) and infrared (IR) rays, thin films of deposited metals or metal oxides are used, and the blocking of UV and IR rays by these thin films depends on the materials deposited on them. Therefore, by controlling the thicknesses and densities of the thin films, improving the transmittance of visible light and the blocking of heat rays such as UV and IR may be possible. Such improvements can be realized not only by changing the two-dimensional thin films but also by altering the zero-dimensional (0-D) nanostructures deposited on the films. In this study, 0-D nanoparticles were synthesized using a sol -gel procedure. The synthesized nanoparticles were deposited as deep coatings on polymer and glass substrates. Through spectral analysis in the UV-visible (vis) region, thin-film layers of deposited zinc oxide nanoparticles blocked >95 % of UV rays. For high transmittance in the visible-light region and low transmittance in the IR and UV regions, hybrid multiple layers of silica nanoparticles, zinc oxide particles, and fluorine-doped tin oxide nanoparticles were formed on glass and polymer substrates. Spectrophotometry in the UV-vis-near-IR regions revealed that the substrates prevented heat loss well. The glass and polymer substrates achieved transmittance values of 80 % in the visible-light region, 50 % to 60 % in the IR region, and 90 % in the UV region.

Design of Face with Mask Detection System in Thermal Images Using Deep Learning (딥러닝을 이용한 열영상 기반 마스크 검출 시스템 설계)

  • Yong Joong Kim;Byung Sang Choi;Ki Seop Lee;Kyung Kwon Jung
    • Convergence Security Journal
    • /
    • v.22 no.2
    • /
    • pp.21-26
    • /
    • 2022
  • Wearing face masks is an effective measure to prevent COVID-19 infection. Infrared thermal image based temperature measurement and identity recognition system has been widely used in many large enterprises and universities in China, so it is totally necessary to research the face mask detection of thermal infrared imaging. Recently introduced MTCNN (Multi-task Cascaded Convolutional Networks)presents a conceptually simple, flexible, general framework for instance segmentation of objects. In this paper, we propose an algorithm for efficiently searching objects of images, while creating a segmentation of heat generation part for an instance which is a heating element in a heat sensed image acquired from a thermal infrared camera. This method called a mask MTCNN is an algorithm that extends MTCNN by adding a branch for predicting an object mask in parallel with an existing branch for recognition of a bounding box. It is easy to generalize the R-CNN to other tasks. In this paper, we proposed an infrared image detection algorithm based on R-CNN and detect heating elements which can not be distinguished by RGB images.

Immediate Effects of High-Frequency Diathermy on Neck, Shoulder Alignment, Pain and Function in Adults with Forward Head Posture (고주파심부투열 치료가 앞쪽머리자세를 가진 성인의 자세정렬, 통증 그리고 기능에 미치는 즉각적인 효과)

  • Young-Joo Cha;Kyoung-Tae Kim
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.12 no.3
    • /
    • pp.143-153
    • /
    • 2024
  • Purpose : Forward head posture (FHP), characterized by the anterior positioning of the head relative to the spine, is a common postural deviation that can lead to neck pain, reduced mobility, and muscle imbalances. Recently, high-frequency deep heat therapy (HFDT) has been gaining attention for the intervention of FHP. This research aims to investigate the efficacy of HFDT in comparison to instrument assisted soft-tissue mobilization (IASTM) for treating FHP among 30 young adults. Methods : Participants were randomly assigned to either the HFDT or IASTM group. The study focused on examining changes in neck joint mobility, pain thresholds, rounded shoulder distance, lower trapezius muscle strength, and neck dysfunction. Measurements were taken before and after the interventions. Paired t-tests were used for within-group analyses, and independent t-tests were employed for between-group comparisons. The statistical significance level α was set to .05. Results : Statistically significant improvements were observed across all measured parameters in both groups (p<.05). The HFDT group showed significantly greater enhancements in neck joint mobility, pain thresholds, rounded shoulder distance, lower trapezius muscle strength, and neck dysfunction parameters. Specifically, HFDT was more effective than IASTM in improving neck joint mobility, right upper trapezius pain threshold, left rounded shoulder distance, and right lower trapezius strength. The only exceptions were neck flexion range of motion, left upper trapezius pain threshold, right rounded shoulder distance, and left lower trapezius strength, where no significant differences were found between the groups. Conclusion : The findings suggest that HFDT, by combining the benefits of high-frequency therapy and manual therapy, effectively alleviates upper trapezius muscle pain and tension, enhances neck mobility, and strengthens lower trapezius muscles. Thus, HFDT could be considered a valuable intervention for clinicians aiming to address FHP and associated musculoskeletal problems.

Forced Flow Dryout Heat Flux in Heat Generating Debris Bed (열을 발생하는 Debris층에서의 강제대류 Dryout 열유속)

  • Cha, Jong-Hee;Chung, Moon-Ki
    • Nuclear Engineering and Technology
    • /
    • v.18 no.4
    • /
    • pp.273-280
    • /
    • 1986
  • The purpose of this study is to obtain the experimental data of the forced flow dryout heat flux in a heat generating debris bed which simulates the degraded nuclear reactor core after severe accident. An experimental investigation has been conducted of dryout heat flux in an inductively heated bed of steel particles with upward forced flow rising coolant circulation system under atmospheric pressure. The present observations were mainly focused on the effects of coolant mass flux, particle size, bed height, and coolant subcooling on the dryout heat flux The data were obtained when carbon steel particles in the size distribution 1.5, 2.5, 3.0 and 4.0 mm were placed in a 55 mm ID Pyrex glass column and inductively heated by passing radio frequency current through a multiturn work coil encircling the column. Distilled water was supplied with variation of mass flux from 0 to 3.5 kg/$\textrm{cm}^2$ s as a coolant in the tests, while the bed height was selected as 55 mm and 110 mm. Inlet temperature of coolant varied by 2$0^{\circ}C$ and 8$0^{\circ}C$. The principal results of the tests are: (1) Dryout heat flux increases with increase of upward forcing mass flux and particle size; (2) The dryout heat flux at the zero mass flux obviously depends on the Particle size as Previous studies; (3) The forced flow dryout heat flux in the shallow bed is somewhat higher than that in the deep bed,

  • PDF

Effect of Heat Treatment and Particle Size on the Crystalline Properties of Wood Cellulose (입자크기 및 열처리가 목재 셀룰로오스의 결정 특성에 미치는 영향)

  • Kim, Ah-ran;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.3
    • /
    • pp.299-310
    • /
    • 2019
  • This study was carried out to investigate the effect of heat-treatment and particle size on the crystalline properties of the wood cellulose. The color of wood flours was changed from light yellow in control sample to dark yellow or deep brown by heat treatment at $100^{\circ}C$ to $200^{\circ}C$. Relative crystallinity of the heat treated wood cellulose decreased with decreasing particle size from wood chips to 200 mesh, and there was little change in the crystal width. As the temperature was increased, relative crystallinity of the wood increased and crystal width was not changed. As a result of the FT-IR analysis, it was confirmed that the peaks were gradually decreased at -OH elongation as the heat-treated temperature was increased. The lignin C-H bending of $1425cm^{-1}$ and the hemicellulose C-H bending of $1370cm^{-1}$ did not change with the increase of the heat treatment temperature. In addition, it was revealed that C-C stretching of carbohydrate near $1031cm^{-1}$ decreased with increasing heat treatment temperature. Consequently, it is suggested that particle size and heat treatment affected the crystalline properties of wood cellulose.

Local dynamic buckling of FPSO steel catenary riser by coupled time-domain simulations

  • Eom, T.S.;Kim, M.H.;Bae, Y.H.;Cifuentes, C.
    • Ocean Systems Engineering
    • /
    • v.4 no.3
    • /
    • pp.215-241
    • /
    • 2014
  • Steel catenary riser (SCR) is a popular/economical solution for the oil/gas production in deep and ultra-deep water. The behavioral characteristics of SCR have a high correlation with the motion of floating production facility at its survival and operational environments. When large motions of surface floaters occur, such as FPSO in 100-yr storm case, they can cause unacceptable negative tension on SCR near TDZ (touch down zone) and the corresponding elastic deflection can be large due to local dynamic buckling. The generation, propagation, and decay of the elastic wave are also affected by SCR and seabed soil interaction effects. The temporary local dynamic buckling vanishes with the recovery of tension on SCR with the upheaval motion of surface floater. Unlike larger-scale, an-order-of-magnitude longer period global buckling driven by heat and pressure variations in subsea pipelines, the sub-critical local dynamic buckling of SCR is motion-driven and short cycled, which, however, can lead to permanent structural damage when the resulting stress is greatly amplified beyond the elastic limit. The phenomenon is extensively investigated in this paper by using the vessel-mooring-riser coupled dynamic analysis program. It is found that the moment of large downward heave motion at the farthest-horizontal-offset position is the most dangerous for the local dynamic buckling.

20kW Turbine Development for OTEC System (20kW OTEC 터빈 개발)

  • Han, Sangjo;Seo, JongBeom
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.38-43
    • /
    • 2014
  • In Ocean, the temperature of the deep sea water is always lower than that of the surface sea water. The temperature difference between the surface water and deep sea water is about $20^{\circ}C$. Based on thermodynamics, this temperature difference can be converted into mechanical power. The mechanical power can be converted to electricity through a generator. However, the temperature difference is relatively small compared with that of traditional steam turbines. It is difficult to apply the steam turbine technology for this small temperature difference directly. Therefore, the turbine for OTEC system using low temperature difference should be designed to meet the system requirement. The present study focuses on the development of the turbine for 20 kW OTEC system using R32. The paper includes the determination of working fluids, meridional design, turbine layout and 3D CFD results. With off-design points analysis, the full performance of 20kW OTEC turbine is investigated. Through the research, one stage radial type turbine with R32 as working fluid is successfully developed and can be applied to other high temperature heat source.

The Weldability of Laminated Stator Core for Motor by Pulsed Nd:YAG Laser [ I ] - The Effect of Processing Parameter on Weldability of Laser - (펄스 Nd:YAG 레이저를 이용한 모터용 스테이터 적층코어의 용접특성 [ I ] - 레이저 용접성에 미치는 가공변수의 영향 -)

  • Kim Jong-Do;Yoo Seung-Jo;Kim Jang-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.629-635
    • /
    • 2006
  • Manufacture of motor by laser has been studying realization that was demands on market for lightening and miniaturization. Moreover. early in the 1980s. manufacture of parts for automobiles by laser welding was already successfully introduced. The purpose of this study was to develop production technology of the high quality laminated stator core for motor by pulsed Nd:YAG laser heat source. In the event of adjusting defocus and voltage to control humping in laser welding of the laminated core. sound bead could be obtained. but deep penetration was not. Therefore. explosive evaporating plasma was controlled by adjustment of peak power on pulse width. Particularly, because explosive evaporating plasma induced high peak power, made molten metal in keyhole scatter. a suitable adjustment of peak power was required to obtain sound bead. As a results of experiment. sound bead and deep penetration could be obtained.