• Title/Summary/Keyword: Deep Fusion Model

Search Result 83, Processing Time 0.023 seconds

Face inpainting via Learnable Structure Knowledge of Fusion Network

  • Yang, You;Liu, Sixun;Xing, Bin;Li, Kesen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.3
    • /
    • pp.877-893
    • /
    • 2022
  • With the development of deep learning, face inpainting has been significantly enhanced in the past few years. Although image inpainting framework integrated with generative adversarial network or attention mechanism enhanced the semantic understanding among facial components, the issues of reconstruction on corrupted regions are still worthy to explore, such as blurred edge structure, excessive smoothness, unreasonable semantic understanding and visual artifacts, etc. To address these issues, we propose a Learnable Structure Knowledge of Fusion Network (LSK-FNet), which learns a prior knowledge by edge generation network for image inpainting. The architecture involves two steps: Firstly, structure information obtained by edge generation network is used as the prior knowledge for face inpainting network. Secondly, both the generated prior knowledge and the incomplete image are fed into the face inpainting network together to get the fusion information. To improve the accuracy of inpainting, both of gated convolution and region normalization are applied in our proposed model. We evaluate our LSK-FNet qualitatively and quantitatively on the CelebA-HQ dataset. The experimental results demonstrate that the edge structure and details of facial images can be improved by using LSK-FNet. Our model surpasses the compared models on L1, PSNR and SSIM metrics. When the masked region is less than 20%, L1 loss reduce by more than 4.3%.

Detection of Dangerous Situations using Deep Learning Model with Relational Inference

  • Jang, Sein;Battulga, Lkhagvadorj;Nasridinov, Aziz
    • Journal of Multimedia Information System
    • /
    • v.7 no.3
    • /
    • pp.205-214
    • /
    • 2020
  • Crime has become one of the major problems in modern society. Even though visual surveillances through closed-circuit television (CCTV) is extensively used for solving crime, the number of crimes has not decreased. This is because there is insufficient workforce for performing 24-hour surveillance. In addition, CCTV surveillance by humans is not efficient for detecting dangerous situations owing to accuracy issues. In this paper, we propose the autonomous detection of dangerous situations in CCTV scenes using a deep learning model with relational inference. The main feature of the proposed method is that it can simultaneously perform object detection and relational inference to determine the danger of the situations captured by CCTV. This enables us to efficiently classify dangerous situations by inferring the relationship between detected objects (i.e., distance and position). Experimental results demonstrate that the proposed method outperforms existing methods in terms of the accuracy of image classification and the false alarm rate even when object detection accuracy is low.

Development of Gas Type Identification Deep-learning Model through Multimodal Method (멀티모달 방식을 통한 가스 종류 인식 딥러닝 모델 개발)

  • Seo Hee Ahn;Gyeong Yeong Kim;Dong Ju Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.12
    • /
    • pp.525-534
    • /
    • 2023
  • Gas leak detection system is a key to minimize the loss of life due to the explosiveness and toxicity of gas. Most of the leak detection systems detect by gas sensors or thermal imaging cameras. To improve the performance of gas leak detection system using single-modal methods, the paper propose multimodal approach to gas sensor data and thermal camera data in developing a gas type identification model. MultimodalGasData, a multimodal open-dataset, is used to compare the performance of the four models developed through multimodal approach to gas sensors and thermal cameras with existing models. As a result, 1D CNN and GasNet models show the highest performance of 96.3% and 96.4%. The performance of the combined early fusion model of 1D CNN and GasNet reached 99.3%, 3.3% higher than the existing model. We hoped that further damage caused by gas leaks can be minimized through the gas leak detection system proposed in the study.

A Study on Biometric Model for Information Security (정보보안을 위한 생체 인식 모델에 관한 연구)

  • Jun-Yeong Kim;Se-Hoon Jung;Chun-Bo Sim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.317-326
    • /
    • 2024
  • Biometric recognition is a technology that determines whether a person is identified by extracting information on a person's biometric and behavioral characteristics with a specific device. Cyber threats such as forgery, duplication, and hacking of biometric characteristics are increasing in the field of biometrics. In response, the security system is strengthened and complex, and it is becoming difficult for individuals to use. To this end, multiple biometric models are being studied. Existing studies have suggested feature fusion methods, but comparisons between feature fusion methods are insufficient. Therefore, in this paper, we compared and evaluated the fusion method of multiple biometric models using fingerprint, face, and iris images. VGG-16, ResNet-50, EfficientNet-B1, EfficientNet-B4, EfficientNet-B7, and Inception-v3 were used for feature extraction, and the fusion methods of 'Sensor-Level', 'Feature-Level', 'Score-Level', and 'Rank-Level' were compared and evaluated for feature fusion. As a result of the comparative evaluation, the EfficientNet-B7 model showed 98.51% accuracy and high stability in the 'Feature-Level' fusion method. However, because the EfficietnNet-B7 model is large in size, model lightweight studies are needed for biocharacteristic fusion.

Face Detection Method based Fusion RetinaNet using RGB-D Image (RGB-D 영상을 이용한 Fusion RetinaNet 기반 얼굴 검출 방법)

  • Nam, Eun-Jeong;Nam, Chung-Hyeon;Jang, Kyung-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.4
    • /
    • pp.519-525
    • /
    • 2022
  • The face detection task of detecting a person's face in an image is used as a preprocess or core process in various image processing-based applications. The neural network models, which have recently been performing well with the development of deep learning, are dependent on 2D images, so if noise occurs in the image, such as poor camera quality or pool focus of the face, the face may not be detected properly. In this paper, we propose a face detection method that uses depth information together to reduce the dependence of 2D images. The proposed model was trained after generating and preprocessing depth information in advance using face detection dataset, and as a result, it was confirmed that the FRN model was 89.16%, which was about 1.2% better than the RetinaNet model, which showed 87.95%.

Camera and LiDAR Sensor Fusion for Improving Object Detection (카메라와 라이다의 객체 검출 성능 향상을 위한 Sensor Fusion)

  • Lee, Jongseo;Kim, Mangyu;Kim, Hakil
    • Journal of Broadcast Engineering
    • /
    • v.24 no.4
    • /
    • pp.580-591
    • /
    • 2019
  • This paper focuses on to improving object detection performance using the camera and LiDAR on autonomous vehicle platforms by fusing detected objects from individual sensors through a late fusion approach. In the case of object detection using camera sensor, YOLOv3 model was employed as a one-stage detection process. Furthermore, the distance estimation of the detected objects is based on the formulations of Perspective matrix. On the other hand, the object detection using LiDAR is based on K-means clustering method. The camera and LiDAR calibration was carried out by PnP-Ransac in order to calculate the rotation and translation matrix between two sensors. For Sensor fusion, intersection over union(IoU) on the image plane with respective to the distance and angle on world coordinate were estimated. Additionally, all the three attributes i.e; IoU, distance and angle were fused using logistic regression. The performance evaluation in the sensor fusion scenario has shown an effective 5% improvement in object detection performance compared to the usage of single sensor.

Design of a deep learning model to determine fire occurrence in distribution switchboard using thermal imaging data (열화상 영상 데이터 기반 배전반 화재 발생 판별을 위한 딥러닝 모델 설계)

  • Dongjoon Park;Minyoung Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.737-745
    • /
    • 2023
  • This paper discusses a study on developing an artificial intelligence model to detect incidents of fires in distribution switchboard using thermal images. The objective of the research is to preprocess collected thermal images into suitable data for object detection models and design a model capable of determining the occurrence of fires within distribution panels. The study utilizes thermal image data from AI-HUB's industrial complex for training. Two CNN-based deep learning object detection algorithms, namely Faster R-CNN and RetinaNet, are employed to construct models. The paper compares and analyzes these two models, ultimately proposing the optimal model for the task.

A Travel Speed Prediction Model for Incident Detection based on Traffic CCTV (돌발상황 검지를 위한 교통 CCTV 기반 통행속도 추정 모델)

  • Ki, Yong-Kul;Kim, Yong-Ho
    • Journal of Industrial Convergence
    • /
    • v.18 no.3
    • /
    • pp.53-61
    • /
    • 2020
  • Travel speed is an important parameter for measuring road traffic and incident detection system. In this paper I suggests a model developed for estimating reliable and accurate average roadway link travel speeds using image processing sensor. This method extracts the vehicles from the video image from CCTV, tracks the moving vehicles using deep neural network, and extracts traffic information such as link travel speeds and volume. The algorithm estimates link travel speeds using a robust data-fusion procedure to provide accurate link travel speeds and traffic information to the public. In the field tests, the new model performed better than existing methods.

Real-Time Joint Animation Production and Expression System using Deep Learning Model and Kinect Camera (딥러닝 모델과 Kinect 카메라를 이용한 실시간 관절 애니메이션 제작 및 표출 시스템 구축에 관한 연구)

  • Kim, Sang-Joon;Lee, Yu-Jin;Park, Goo-man
    • Journal of Broadcast Engineering
    • /
    • v.26 no.3
    • /
    • pp.269-282
    • /
    • 2021
  • As the distribution of 3D content such as augmented reality and virtual reality increases, the importance of real-time computer animation technology is increasing. However, the computer animation process consists mostly of manual or marker-attaching motion capture, which requires a very long time for experienced professionals to obtain realistic images. To solve these problems, animation production systems and algorithms based on deep learning model and sensors have recently emerged. Thus, in this paper, we study four methods of implementing natural human movement in deep learning model and kinect camera-based animation production systems. Each method is chosen considering its environmental characteristics and accuracy. The first method uses a Kinect camera. The second method uses a Kinect camera and a calibration algorithm. The third method uses deep learning model. The fourth method uses deep learning model and kinect. Experiments with the proposed method showed that the fourth method of deep learning model and using the Kinect simultaneously showed the best results compared to other methods.

Multi-Object Goal Visual Navigation Based on Multimodal Context Fusion (멀티모달 맥락정보 융합에 기초한 다중 물체 목표 시각적 탐색 이동)

  • Jeong Hyun Choi;In Cheol Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.9
    • /
    • pp.407-418
    • /
    • 2023
  • The Multi-Object Goal Visual Navigation(MultiOn) is a visual navigation task in which an agent must visit to multiple object goals in an unknown indoor environment in a given order. Existing models for the MultiOn task suffer from the limitation that they cannot utilize an integrated view of multimodal context because use only a unimodal context map. To overcome this limitation, in this paper, we propose a novel deep neural network-based agent model for MultiOn task. The proposed model, MCFMO, uses a multimodal context map, containing visual appearance features, semantic features of environmental objects, and goal object features. Moreover, the proposed model effectively fuses these three heterogeneous features into a global multimodal context map by using a point-wise convolutional neural network module. Lastly, the proposed model adopts an auxiliary task learning module to predict the observation status, goal direction and the goal distance, which can guide to learn the navigational policy efficiently. Conducting various quantitative and qualitative experiments using the Habitat-Matterport3D simulation environment and scene dataset, we demonstrate the superiority of the proposed model.