• Title/Summary/Keyword: Deep Features

Search Result 1,093, Processing Time 0.025 seconds

Intra-Class Random Erasing (ICRE) augmentation for audio classification

  • Kumar, Teerath;Park, Jinbae;Bae, Sung-Ho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.244-247
    • /
    • 2020
  • Data augmentation has been helpful in improving the performance in deep learning, when we have a limited data and random erasing is one of the augmentations that have shown impressive performance in deep learning in multiple domains. But the main issue is that sometime it loses good features when randomly selected region is erased by some random values, that does not improve performance as it should. We target that problem in way that good features should not be lost and also want random erasing at the same time. For that purpose, we introduce new augmentation technique named Intra-Class Random Erasing (ICRE) that focuses on data to learn robust features of the same class samples by randomly exchanging randomly selected region. We perform multiple experiments by using different models including resnet18, VGG16 over variety of the datasets including ESC10, UrbanSound8K. Our approach has shown effectiveness over others methods including random erasing.

  • PDF

Variational autoencoder for prosody-based speaker recognition

  • Starlet Ben Alex;Leena Mary
    • ETRI Journal
    • /
    • v.45 no.4
    • /
    • pp.678-689
    • /
    • 2023
  • This paper describes a novel end-to-end deep generative model-based speaker recognition system using prosodic features. The usefulness of variational autoencoders (VAE) in learning the speaker-specific prosody representations for the speaker recognition task is examined herein for the first time. The speech signal is first automatically segmented into syllable-like units using vowel onset points (VOP) and energy valleys. Prosodic features, such as the dynamics of duration, energy, and fundamental frequency (F0), are then extracted at the syllable level and used to train/adapt a speaker-dependent VAE from a universal VAE. The initial comparative studies on VAEs and traditional autoencoders (AE) suggest that the former can efficiently learn speaker representations. Investigations on the impact of gender information in speaker recognition also point out that gender-dependent impostor banks lead to higher accuracies. Finally, the evaluation on the NIST SRE 2010 dataset demonstrates the usefulness of the proposed approach for speaker recognition.

Similar Image Retrieval Technique based on Semantics through Automatic Labeling Extraction of Personalized Images

  • Jung-Hee, Seo
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.1
    • /
    • pp.56-63
    • /
    • 2024
  • Despite the rapid strides in content-based image retrieval, a notable disparity persists between the visual features of images and the semantic features discerned by humans. Hence, image retrieval based on the association of semantic similarities recognized by humans with visual similarities is a difficult task for most image-retrieval systems. Our study endeavors to bridge this gap by refining image semantics, aligning them more closely with human perception. Deep learning techniques are used to semantically classify images and retrieve those that are semantically similar to personalized images. Moreover, we introduce a keyword-based image retrieval, enabling automatic labeling of images in mobile environments. The proposed approach can improve the performance of a mobile device with limited resources and bandwidth by performing retrieval based on the visual features and keywords of the image on the mobile device.

ONE CASE OF ACUTE MEDIASTINITIS IN DEEP NECK INFECTION (경부심부감염에 의한 급성 종격동염 1례)

  • 박종태;김정은;백승훈;김명원;이종환;장백암
    • Korean Journal of Bronchoesophagology
    • /
    • v.2 no.2
    • /
    • pp.253-257
    • /
    • 1996
  • Deep neck infections were flirty common and a source of considerable morbidity and mortality. Although the advent of antibiotics has reduced the overall number of deep neck infections, they still occur in the general population. There are several new groups of patients at risk for deep neck infections, such as immunocompromised individuals, those with underlying diseases. Prevention of the severe sequale that may be associated with deep neck infections- mediastinitis, airway obstruction, carotid artery hemorrhage, aspiration pneumonia, septicemia - requires a knowledge of various portals of entry for infection, the presenting sign and symptoms, the possible microbiologic features, appropriate laboratory and radiologic workups, therapeutic techniques, and the ongoing medical management. A prompt diagnosis and institution of therapy will shorten the course of required treatment and reduce morbility and mortility. The authors have experienced one case of acute mediastinitis in deep neck infection patient with diabetes mellitus.

  • PDF

Analysis of deep learning-based deep clustering method (딥러닝 기반의 딥 클러스터링 방법에 대한 분석)

  • Hyun Kwon;Jun Lee
    • Convergence Security Journal
    • /
    • v.23 no.4
    • /
    • pp.61-70
    • /
    • 2023
  • Clustering is an unsupervised learning method that involves grouping data based on features such as distance metrics, using data without known labels or ground truth values. This method has the advantage of being applicable to various types of data, including images, text, and audio, without the need for labeling. Traditional clustering techniques involve applying dimensionality reduction methods or extracting specific features to perform clustering. However, with the advancement of deep learning models, research on deep clustering techniques using techniques such as autoencoders and generative adversarial networks, which represent input data as latent vectors, has emerged. In this study, we propose a deep clustering technique based on deep learning. In this approach, we use an autoencoder to transform the input data into latent vectors, and then construct a vector space according to the cluster structure and perform k-means clustering. We conducted experiments using the MNIST and Fashion-MNIST datasets in the PyTorch machine learning library as the experimental environment. The model used is a convolutional neural network-based autoencoder model. The experimental results show an accuracy of 89.42% for MNIST and 56.64% for Fashion-MNIST when k is set to 10.

Deep recurrent neural networks with word embeddings for Urdu named entity recognition

  • Khan, Wahab;Daud, Ali;Alotaibi, Fahd;Aljohani, Naif;Arafat, Sachi
    • ETRI Journal
    • /
    • v.42 no.1
    • /
    • pp.90-100
    • /
    • 2020
  • Named entity recognition (NER) continues to be an important task in natural language processing because it is featured as a subtask and/or subproblem in information extraction and machine translation. In Urdu language processing, it is a very difficult task. This paper proposes various deep recurrent neural network (DRNN) learning models with word embedding. Experimental results demonstrate that they improve upon current state-of-the-art NER approaches for Urdu. The DRRN models evaluated include forward and bidirectional extensions of the long short-term memory and back propagation through time approaches. The proposed models consider both language-dependent features, such as part-of-speech tags, and language-independent features, such as the "context windows" of words. The effectiveness of the DRNN models with word embedding for NER in Urdu is demonstrated using three datasets. The results reveal that the proposed approach significantly outperforms previous conditional random field and artificial neural network approaches. The best f-measure values achieved on the three benchmark datasets using the proposed deep learning approaches are 81.1%, 79.94%, and 63.21%, respectively.

Segmentation of Bacterial Cells Based on a Hybrid Feature Generation and Deep Learning (하이브리드 피처 생성 및 딥 러닝 기반 박테리아 세포의 세분화)

  • Lim, Seon-Ja;Vununu, Caleb;Kwon, Ki-Ryong;Youn, Sung-Dae
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.8
    • /
    • pp.965-976
    • /
    • 2020
  • We present in this work a segmentation method of E. coli bacterial images generated via phase contrast microscopy using a deep learning based hybrid feature generation. Unlike conventional machine learning methods that use the hand-crafted features, we adopt the denoising autoencoder in order to generate a precise and accurate representation of the pixels. We first construct a hybrid vector that combines original image, difference of Gaussians and image gradients. The created hybrid features are then given to a deep autoencoder that learns the pixels' internal dependencies and the cells' shape and boundary information. The latent representations learned by the autoencoder are used as the inputs of a softmax classification layer and the direct outputs from the classifier represent the coarse segmentation mask. Finally, the classifier's outputs are used as prior information for a graph partitioning based fine segmentation. We demonstrate that the proposed hybrid vector representation manages to preserve the global shape and boundary information of the cells, allowing to retrieve the majority of the cellular patterns without the need of any post-processing.

Gesture-Based Emotion Recognition by 3D-CNN and LSTM with Keyframes Selection

  • Ly, Son Thai;Lee, Guee-Sang;Kim, Soo-Hyung;Yang, Hyung-Jeong
    • International Journal of Contents
    • /
    • v.15 no.4
    • /
    • pp.59-64
    • /
    • 2019
  • In recent years, emotion recognition has been an interesting and challenging topic. Compared to facial expressions and speech modality, gesture-based emotion recognition has not received much attention with only a few efforts using traditional hand-crafted methods. These approaches require major computational costs and do not offer many opportunities for improvement as most of the science community is conducting their research based on the deep learning technique. In this paper, we propose an end-to-end deep learning approach for classifying emotions based on bodily gestures. In particular, the informative keyframes are first extracted from raw videos as input for the 3D-CNN deep network. The 3D-CNN exploits the short-term spatiotemporal information of gesture features from selected keyframes, and the convolutional LSTM networks learn the long-term feature from the features results of 3D-CNN. The experimental results on the FABO dataset exceed most of the traditional methods results and achieve state-of-the-art results for the deep learning-based technique for gesture-based emotion recognition.

Subsurface anomaly detection utilizing synthetic GPR images and deep learning model

  • Ahmad Abdelmawla;Shihan Ma;Jidong J. Yang;S. Sonny Kim
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.203-209
    • /
    • 2023
  • One major advantage of ground penetrating radar (GPR) over other field test methods is its ability to obtain subsurface images of roads in an efficient and non-intrusive manner. Not only can the strata of pavement structure be retrieved from the GPR scan images, but also various irregularities, such as cracks and internal cavities. This article introduces a deep learning-based approach, focusing on detecting subsurface cracks by recognizing their distinctive hyperbolic signatures in the GPR scan images. Given the limited road sections that contain target features, two data augmentation methods, i.e., feature insertion and generation, are implemented, resulting in 9,174 GPR scan images. One of the most popular real-time object detection models, You Only Learn One Representation (YOLOR), is trained for detecting the target features for two types of subsurface cracks: bottom cracks and full cracks from the GPR scan images. The former represents partial cracks initiated from the bottom of the asphalt layer or base layers, while the latter includes extended cracks that penetrate these layers. Our experiments show the test average precisions of 0.769, 0.803 and 0.735 for all cracks, bottom cracks, and full cracks, respectively. This demonstrates the practicality of deep learning-based methods in detecting subsurface cracks from GPR scan images.

3D Object Generation and Renderer System based on VAE ResNet-GAN

  • Min-Su Yu;Tae-Won Jung;GyoungHyun Kim;Soonchul Kwon;Kye-Dong Jung
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.142-146
    • /
    • 2023
  • We present a method for generating 3D structures and rendering objects by combining VAE (Variational Autoencoder) and GAN (Generative Adversarial Network). This approach focuses on generating and rendering 3D models with improved quality using residual learning as the learning method for the encoder. We deep stack the encoder layers to accurately reflect the features of the image and apply residual blocks to solve the problems of deep layers to improve the encoder performance. This solves the problems of gradient vanishing and exploding, which are problems when constructing a deep neural network, and creates a 3D model of improved quality. To accurately extract image features, we construct deep layers of the encoder model and apply the residual function to learning to model with more detailed information. The generated model has more detailed voxels for more accurate representation, is rendered by adding materials and lighting, and is finally converted into a mesh model. 3D models have excellent visual quality and accuracy, making them useful in various fields such as virtual reality, game development, and metaverse.