• Title/Summary/Keyword: Deep Excavations

Search Result 54, Processing Time 0.016 seconds

A Case Study on Reinforcement Method by Excavation Adjacent to the Subway Tunnel using Numerical Analysis (수치해석을 통한 지하철 구조물 인접 굴착에 따른 보강공법 적용사례연구)

  • Byun, Yo-Seph;Jung, Kyoung-Sik;Chun, Byung-Sik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.9
    • /
    • pp.5-11
    • /
    • 2011
  • Recently, large and deep excavations are increasing. The damage of adjacent structures due to excavation has steadily increased with increasing construction demand. Especially in urban development and poor conditions, the excavation adjacent to the subway structures has caused a lot of problems. This paper was reviewed that the underground excavation and reinforcement of the status process through a case study on the field. And stability analysis through the case study evaluates applicability for reasonable reinforcement method by numerical analysis. As a result, the strata distribution condition of all 16 sites consisted of landfill from the top and distributed in the order of deposits, weathered soils, weak rock from the bottom. Also, when proceeding the excavation adjacent to structures, the location of site and layer conditions have highly effect on the results of the construction. Therefore, this study was applied reinforcement method to protect damage by excavation. Displacement and settlement were within allowable criterion and hence, stability of structure was analyzed as safe.

Experimental evaluation of back-to-back anchored walls by double-plates anchors

  • Amir, Najafizadeh;AmirAli, Zad
    • Geomechanics and Engineering
    • /
    • v.31 no.6
    • /
    • pp.599-614
    • /
    • 2022
  • One of the methods of stabilizing retaining walls, embankments, and deep excavations is the implementation of plate anchors (like the Geolock wall anchor systems). Back-to-back Mechanically Stabilized Earth (BBMSE) walls are common stabilized earth structures that can be used for bridge ramps. But so far, the analysis of the interactive behavior of two back-to-back anchored walls (BBAW) by double-plates anchors (constructed closely from each other and subjected to the limited-breadth vertical loading) including interference of their failure and sliding surfaces has not been the subject of comprehensive studies. Indeed, in this compound system, the interaction of sliding wedges of these two back-to-back walls considering the shear failure wedge of the foundation, significantly impresses on the foundation bearing capacity, adjacent walls displacements and deformations, and their stability. In this study, the effect of horizontal distance between two walls (W), breadth of loading plate (B), and position of vertical loading was investigated experimentally. In addition, the comparison of using single and equivalent double-plate anchors was evaluated. The loading plate bearing capacity and displacements, and deformations of BBAW were measured and the results are presented. To evaluate the shape, form, and how the critical failure surfaces of the soil behind the walls and beneath the foundation intersect with one another, the Particle Image Velocimetry (PIV) technique was applied. The experimental tests results showed that in this composite system (two adjacent-loaded BBAW) the effective distance of walls is about W = 2.5*H (H: height of walls) and the foundation effective breadth is about B = H, concerning foundation bearing capacity, walls horizontal displacements and their deformations. For more amounts of W and B, the foundation and walls can be designed and analyzed individually. Besides, in this compound system, the foundation bearing capacity is an exponential function of the System Geometry Variable (SGV) whereas walls displacements are a quadratic function of it. Finally, as an important achievement, doubling the plates of anchors can facilitate using concrete walls, which have limitations in tolerating curvature.

Analysis of the Impact on Prediction Models Based on Data Scaling and Data Splitting Methods - For Retaining Walls with Ground Anchors Installed (데이터 스케일링과 분할 방식에 따른 예측모델의 영향 분석 - 그라운드 앵커가 설치된 흙막이 벽체 대상)

  • Jun Woo Shin;Heui Soo Han
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.639-655
    • /
    • 2023
  • Recently, there has been a growing demand for underground space, leading to the utilization of earth retaining walls for deep excavations. Earth retaining walls are structures that are susceptible to displacement, and their measurement and management are carried out in accordance with the standards established by the Ministry of Land, Infrastructure, and Transport. However, managing displacement through measurement can be considered similar to post-processing. Therefore, in this study, we not only predicted the horizontal displacement of a retaining wall with ground anchors installed using machine learning, but also analyzed the impact of the prediction model based on data scaling and data splitting methods while learning measurement data using machine learning. Custom splitting was the most suitable method for learning and outputting measurement data. Data scaling demonstrated excellent performance, with an error within 1 and an R-squared value of 0.77 when the anchor tensile force and water pressure were standardized. Additionally, it predicted a negative displacement compared to a model that without scaling.

An experimental study on the behavior of the helical tiebacks in the flexible retaining walls

  • Majid Khanjani;Hamid Reza Saba;Seyed Hamid Lajevardi;Seyed Mohammad Mirhosseini;Ehsanollah Zeighami
    • Geomechanics and Engineering
    • /
    • v.36 no.6
    • /
    • pp.527-543
    • /
    • 2024
  • In the implementation of most civil structures, especially underground, deep excavations with a vertical slope are required. Using flexible retaining walls is applied as one of the ways to stabilize vertical holes. Therefore, it is necessary to know the parameters affecting the performance of such walls in reducing their horizontal movement. In this research, by building a suitable laboratory model, the parameters of the amount of flexibility, the embedment depth of the wall, the type and number of tieback in the wall were investigated for 42 static laboratory models. The purpose of this research is to study the flexible retaining wall with helical tieback compared to simple tieback at different heights, which shows the best performance in terms of reducing horizontal displacement in proportion to increasing or decreasing flexibility. On the other hand, one of the parameters affecting the flexibility of the wall, which is its bending stiffness, was extracted by numerical software outputs and studied on the results such as relative flexibility, stiffness, safety and numerical stability of the wall.The results of this study show that among the parameters, in the first place, the effect of the type of tieback is inhibited and in the second place, the ratio of thickness to wall height is known as the most important parameter. the best performance for walls with the helical tiebacks in reducing their horizontal displacement can be economically, flexibly and stability assigned to a wall that tiebacks is in the range of H2/t to H4/t and its flexibility ratio is 2/3.