• 제목/요약/키워드: Deep CNN

검색결과 1,171건 처리시간 0.026초

한국 전통문화 말뭉치구축 및 Bi-LSTM-CNN-CRF를 활용한 전통문화 개체명 인식 모델 개발 (Constructing for Korean Traditional culture Corpus and Development of Named Entity Recognition Model using Bi-LSTM-CNN-CRFs)

  • 김경민;김규경;조재춘;임희석
    • 한국융합학회논문지
    • /
    • 제9권12호
    • /
    • pp.47-52
    • /
    • 2018
  • 개체명 인식(Named Entity Recognition)시스템은 문서로부터 고유한 의미를 가질 수 있는 인명(PS), 지명(LC), 기관명(OG) 등의 개체명을 추출하고 추출된 개체명의 범주를 결정하는 시스템이다. 최근 딥러닝 방식을 이용한 개체명 인식 연구에서 입력 데이터의 앞, 뒤 방향을 고려한 LSTM 기반의 Bi-LSTM 모델로부터 출력 데이터 간의 전이 확률을 이용한 CRF를 결합한 방식의 Bi-LSTM-CRF가 우수한 성능을 보이고, 문자 및 단어 단위의 효율적인 임베딩 벡터생성에 관한 연구와 CNN, LSTM을 활용한 모델에서도 좋은 성능을 보여주고 있다. 본 연구에서는 한국어 개체명 인식시스템 성능 향상을 위해 자질을 보강한 Bi-LSTM-CNN-CRF 모델에 관해 기술하고 전통문화 말뭉치구축 방식에 대해 제안한다. 그리고 구축한 말뭉치를 한국어 개체명 인식 성능 향상을 위한 자질 보강 모델 Bi-LSTM-CNN-CRF로 학습한 결과에 대해 제안한다.

이미지 잡음에 강인한 CNN 기반 건물 인식 방법 (CNN-based Building Recognition Method Robust to Image Noises)

  • 이효찬;박인학;임태호;문대철
    • 한국정보통신학회논문지
    • /
    • 제24권3호
    • /
    • pp.341-348
    • /
    • 2020
  • 인간의 눈과 같이 이미지에서 유용한 정보를 추출하는 기능은 인공지능 컴퓨터 구현에 필수적인 인터페이스 기술이다. 이미지에서 건물을 인식하여 추론하는 기술은 다양한 형태의 건물 외관, 계절에 따른 주변 잡음 이미지의 변화, 각도 및 거리에 따른 왜곡 등으로 다른 이미지 인식 기술 보다 인식률이 떨어진다. 지금까지 제시된 컴퓨터 비전(Computer Vision) 기반의 건물 인식 알고리즘들은 건물 특성을 수작업으로 정의하기 때문에 분별력과 확장성에 한계가 있다. 본 논문은 최근 이미지 인식에 유용한 딥러닝의 CNN(Convolutional Neural Network) 모델을 활용하는데 건물 외관에 나타나는 변화, 즉 계절, 조도, 각도 및 원근에 의해 떨어지는 인식률을 향상시키는 새로운 방법을 제안한다. 건물 전체 이미지와 함께 건물의 특징을 나타내는 부분 이미지들, 즉 창문이나 벽재 이미지의 데이터 세트를 함께 학습시키고 건물 인식에 활용함으로써 일반 CNN 모델 보다 건물 인식률을 약 14% 향상됨을 실험으로 증명하였다.

CNN 잡음 감쇠기에서 커널 사이즈의 최적화 (Optimization of the Kernel Size in CNN Noise Attenuator)

  • 이행우
    • 한국전자통신학회논문지
    • /
    • 제15권6호
    • /
    • pp.987-994
    • /
    • 2020
  • 본 논문은 음향잡음감쇠기에서 CNN(: Convolutional Neural Network) 계층의 커널 사이즈가 성능에 미치는 영향을 위한 연구하였다 이 시스템은 기존의 적응필터를 이용하는 대신 신경망 적응예측필터를 이용한 심층학습 알고리즘으로 잡음감쇠 성능을 개선한다. 100-neuron, 16-filter CNN 필터와 오차 역전파(back propagation) 알고리즘을 이용하여 잡음이 포함된 단일입력 음성신호로부터 음성을 추정한다. 이는 음성신호가 갖는 유성음 구간에서의 준주기적 성질을 이용하는 것이다. 본 연구에서 커널 사이즈에 대한 잡음감쇠기의 성능을 검증하기 위하여 Tensorflow와 Keras 라이브러리를 사용한 시뮬레이션 프로그램을 작성하고 모의실험을 수행하였다. 모의실험 결과, 커널 사이즈가 16 정도일 때 평균자승오차(MSE: Mean Square Error) 및 평균절대값오차(MAE: Mean Absolute Error) 값이 가장 작은 것으로 나타났으며 사이즈가 이보다 더 작거나 커지면 MSE 및 MAE 값이 증가하는 것을 볼 수 있다. 이는 음성신호의 경우 커널 사이즈가 16 정도일 때 특성을 가장 잘 포집할 수 있음을 알 수 있다.

스펙트로그램 이미지를 이용한 CNN 기반 자동화 기계 고장 진단 기법 (CNN-based Automatic Machine Fault Diagnosis Method Using Spectrogram Images)

  • 강경원;이경민
    • 융합신호처리학회논문지
    • /
    • 제21권3호
    • /
    • pp.121-126
    • /
    • 2020
  • 소리 기반 기계 고장 진단은 기계의 음향 방출 신호에서 비정상적인 소리를 자동으로 감지하는 것이다. 수학적 모델을 사용하는 기존의 방법은 기계 시스템의 복잡성과 잡음과 같은 비선형 요인이 존재하기 때문에 기계 고장 진단이 어려웠다. 따라서 기계 고장 진단의 문제를 딥러닝 기반 이미지 분류 문제로 해결하고자 한다. 본 논문에서 스펙트로그램 이미지를 이용한 CNN 기반 자동화 기계 고장 진단 기법을 제안한다. 제안한 방법은 기계의 결함 시 발생하는 주파수상의 특징 벡터를 효과적으로 추출하기 위해 STFT를 사용하였으며, STFT에 의해 검출된 특징 벡터들은 스펙트로그램 이미지로 변환하여 CNN을 이용해 기계의 상태별로 분류한다. 그 결과는 제안한 방법은 효과적으로 결함을 탐지할 뿐만 아니라 소리 기반의 다양한 자동 진단 시스템에도 효과적으로 활용될 수 있다.

진화연산 기반 CNN 필터 축소 (Evolutionary Computation Based CNN Filter Reduction)

  • 서기성
    • 전기학회논문지
    • /
    • 제67권12호
    • /
    • pp.1665-1670
    • /
    • 2018
  • A convolutional neural network (CNN), which is one of the deep learning models, has been very successful in a variety of computer vision tasks. Filters of a CNN are automatically generated, however, they can be further optimized since there exist the possibility of existing redundant and less important features. Therefore, the aim of this paper is a filter reduction to accelerate and compress CNN models. Evolutionary algorithms is adopted to remove the unnecessary filters in order to minimize the parameters of CNN networks while maintaining a good performance of classification. We demonstrate the proposed filter reduction methods performing experiments on CIFAR10 data based on the classification performance. The comparison for three approaches is analysed and the outlook for the potential next steps is suggested.

Effect of Input Data Video Interval and Input Data Image Similarity on Learning Accuracy in 3D-CNN

  • Kim, Heeil;Chung, Yeongjee
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제13권2호
    • /
    • pp.208-217
    • /
    • 2021
  • 3D-CNN is one of the deep learning techniques for learning time series data. However, these three-dimensional learning can generate many parameters, requiring high performance or having a significant impact on learning speed. We will use these 3D-CNNs to learn hand gesture and find the parameters that showed the highest accuracy, and then analyze how the accuracy of 3D-CNN varies through input data changes without any structural changes in 3D-CNN. First, choose the interval of the input data. This adjusts the ratio of the stop interval to the gesture interval. Secondly, the corresponding interframe mean value is obtained by measuring and normalizing the similarity of images through interclass 2D cross correlation analysis. This experiment demonstrates that changes in input data affect learning accuracy without structural changes in 3D-CNN. In this paper, we proposed two methods for changing input data. Experimental results show that input data can affect the accuracy of the model.

압축된 영상 복원을 위한 양자화된 CNN 기반 초해상화 기법 (Quantized CNN-based Super-Resolution Method for Compressed Image Reconstruction)

  • 김용우;이종환
    • 반도체디스플레이기술학회지
    • /
    • 제19권4호
    • /
    • pp.71-76
    • /
    • 2020
  • In this paper, we propose a super-resolution method that reconstructs compressed low-resolution images into high-resolution images. We propose a CNN model with a small number of parameters, and even if quantization is applied to the proposed model, super-resolution can be implemented without deteriorating the image quality. To further improve the quality of the compressed low-resolution image, a new degradation model was proposed instead of the existing bicubic degradation model. The proposed degradation model is used only in the training process and can be applied by changing only the parameter values to the original CNN model. In the super-resolution image applying the proposed degradation model, visual artifacts caused by image compression were effectively removed. As a result, our proposed method generates higher PSNR values at compressed images and shows better visual quality, compared to conventional CNN-based SR methods.

관절질환 관리를 위한 Mask R-CNN을 이용한 모션 모니터링 (Motion Monitoring using Mask R-CNN for Articulation Disease Management)

  • 박성수;백지원;조선문;정경용
    • 한국융합학회논문지
    • /
    • 제10권3호
    • /
    • pp.1-6
    • /
    • 2019
  • 현대사회는 생활과 개성이 중요시 되면서 개인화된 생활습관 및 패턴이 생기고 있으며, 잘못된 생활습관으로 인해 관절질환자가 증가하고 있다. 또한 1인 가구가 점점 증가하면서 응급상황이 발생할 경우 알맞은 시간에 응급처치를 받지 못하는 경우가 생긴다. 건강과 질병관리에 필요한 개인의 상태에 따른 정확한 분석을 통해 스스로 관리할 수 있는 정보와 응급상황에 맞는 케어가 필요하다. 딥러닝 중에서 CNN은 데이터의 분류 및 예측에 효율적으로 사용된다. CNN은 데이터 특징에 따라 정확도 및 처리 속도에 차이를 보인다. 따라서 실시간 헬스케어를 위해 처리속도 향상과 정확도 개선이 필요하다. 본 논문에서는 관절질환 관리를 위한 Mask R-CNN을 이용한 모션 모니터링을 제안한다. 제안하는 방법은 Mask R-CNN을 이용하여 CNN의 정확도와 처리 속도를 개선하는 방법이다. 사용자의 모션을 신경망에 학습시킨 후 사용자의 모션이 학습된 데이터와 차이가 있을 경우 사용자에게 관리법을 피드백 해주고 보호자에게 응급상황을 알릴 수 있으며 상황에 맞는 적절한 조치를 취할 수 있다.

Breast Mass Classification using the Fundamental Deep Learning Approach: To build the optimal model applying various methods that influence the performance of CNN

  • Lee, Jin;Choi, Kwang Jong;Kim, Seong Jung;Oh, Ji Eun;Yoon, Woong Bae;Kim, Kwang Gi
    • Journal of Multimedia Information System
    • /
    • 제3권3호
    • /
    • pp.97-102
    • /
    • 2016
  • Deep learning enables machines to have perception and can potentially outperform humans in the medical field. It can save a lot of time and reduce human error by detecting certain patterns from medical images without being trained. The main goal of this paper is to build the optimal model for breast mass classification by applying various methods that influence the performance of Convolutional Neural Network (CNN). Google's newly developed software library Tensorflow was used to build CNN and the mammogram dataset used in this study was obtained from 340 breast cancer cases. The best classification performance we achieved was an accuracy of 0.887, sensitivity of 0.903, and specificity of 0.869 for normal tissue versus malignant mass classification with augmented data, more convolutional filters, and ADAM optimizer. A limitation of this method, however, was that it only considered malignant masses which are relatively easier to classify than benign masses. Therefore, further studies are required in order to properly classify any given data for medical uses.

컨볼루션 신경망을 기반으로 한 드론 영상 분류 (Drone Image Classification based on Convolutional Neural Networks)

  • 주영도
    • 한국인터넷방송통신학회논문지
    • /
    • 제17권5호
    • /
    • pp.97-102
    • /
    • 2017
  • 최근 고해상도 원격탐사 자료의 분류방안으로 컨볼루션 신경망(Convolutional Neural Networks)을 비롯한 딥 러닝 기법들이 소개되고 있다. 본 논문에서는 드론으로 촬영된 농경지 영상의 작물 분류를 위해 컨볼루션 신경망을 적용하여 가능성을 검토하였다. 농경지를 논, 고구마, 고추, 옥수수, 깻잎, 과수, 비닐하우스로 총 7가지 클래스로 나누고 수동으로 라벨링 작업을 완료했다. 컨볼루션 신경망 적용을 위해 영상 전처리와 정규화 작업을 수행하였으며 영상분류 결과 98%이상 높은 정확도를 확인할 수 있었다. 본 논문을 통해 기존 영상분류 방법들에서 딥 러닝 기반 영상분류 방법으로의 전환이 빠르게 진행될 것으로 예상되며, 그 성공 가능성을 확신할 수 있었다.