• Title/Summary/Keyword: Dediffentiation

Search Result 1, Processing Time 0.013 seconds

Dedifferentiation State Specific Increase of Trypsin- and Chymotrypsin-like Protease Activities during Urodele Limb Regeneration and Their Enhancement by Retinoic Acid Treatment (유미양서류 다리 재생 기간중 탈분화 시기 특이적 트립신, 키모트립신 유사 단백질 효소의 활성도 증가)

  • 이은호;김원선
    • The Korean Journal of Zoology
    • /
    • v.39 no.1
    • /
    • pp.65-74
    • /
    • 1996
  • Treatment of regenerating amphibian limbs with retinoic acid (RA) is known to induce paftern duplication, which is closely related to the extent of dedifferentiation. In the present study, the activities of trypsin- and chymotrypsin-like proteases are examined to delineate a possible role in the process of dedifferentiation in the regenerating limbs of urodeles, the Korean salamander (Hynobius leechii) and the Mexican axolod (Ambystoma mexicanum). Specifically, we were interested to know if there is any correlation between trypsin- and chymotrypsin-like protease activities and the state of dedifferentiation which is augmented by RA treatment. We were also interested in expoloring if there is any species-specific difference in the profile of enzyme activities during limb regeneration. The results showed that the activities of these two enzymes reached a peak level at dedifferentiation stage, and RA treatment caused elevation of their activities, especially in the case of trypsin-like protease. The increase of trypsin-like protease activity after RA treatment was pronounced in the Korean salamander, which might reflect a species-specific responsiveness to RA. The present results imply that trypsin and chymotrypsin or similar proteases may play an active role in the process of dedifferentiation in regenerating limbs, and that trypsin or trypsin-like eryrymes might be involved in the RA-evoked enhancement of dedifferentiation which precedes overt pattern duplication.

  • PDF