• Title/Summary/Keyword: Decrease Work Efficiency

Search Result 159, Processing Time 0.031 seconds

On the Development of In-process Measurement System for Guidance Core Diameter (유도심경의 인프로세스 측정시스템 개발)

  • 김정두
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.190-195
    • /
    • 1998
  • The guidance core is a principal part installed between the ink and the pen nib for the function of supplying ink to paper with reqularity. The current measurement of this product, Guidance core, in service is done by on operator with a micrometer, which could result in the decrease of productivity and working efficiency as well as causing errors. In this study, the existing measurement of the dialmeter of the Guidance core in the centerless grinding process is changed to the inprocessor measurement which enables consecutive measurement during the production of the Guidance core, and this system is also developed to work properly under bad circumstances and to have superior reliance and operational efficiency.

  • PDF

The Effect of Crystal and Non-Crystal Structures on Shielding Material Behaviour Under A.C. Field Excitations

  • Rahman, Nazaruddin Abd;Mahadi, Wan Nor Liza
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.9-13
    • /
    • 2013
  • Shielding effects in conductive and magnetic materials were investigated as a function of properties, thickness and diameter. In this work, evaluations on passive conductive and magnetic shield specimens were achieved through experimentation set-up using 50 Hz single and three phase induction field sources. Analysis on material microstructure properties and characteristics of shielding specimens were performed with the use of vibrating sample magnetometer (VSM) and field emission scanning electron microscopy (FESEM). An induction field at $136{\mu}T$ of single phase system and $50{\mu}T$ of three phase systems were observed to the shield specimens with the thickness ranged of 0.2 mm to 0.4 mm. It is observed that shield specimen efficiency becomes inversely proportionate to the increment of induction fields. The decrease was attributed to the surface structure texture which relates to the crystallization and non-crystallization geometrical effects.

Effectiveness Analysis of Variable Speed Limit Systems(VSL) in Work Zones based on Meta-analysis (메타분석을 이용한 공사구간 가변속도제한시스템(VSL) 효과분석)

  • Jo, Young;Youn, Seok-min;Oh, Cheol
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.4
    • /
    • pp.91-103
    • /
    • 2016
  • The work zone traffic management is of keen interest because the unstable traffic stream in work zones leads to not only less productive traffic operational efficiency but also negative impacts on traffic safety. A promising method to address such issues is variable speed limit systems(VSLS). VSLS is expected to increase in throughput and to enhance safety by diminishing the crash potential. In addition, the usefulness of VSLS has been demonstrated by significant amount of existing literature. The objective of this study is to identify the effectiveness of VSLS based on a meta analysis technique. Throughput and travel speed were used as measures of effectiveness for VSLS in terms of the operational efficiency and safety respectively. Results showed that approximately 16.4% increase in throughput and 16.5% decrease in travel speed were obtainable by VSLS. The outcomes of this study would be useful in developing technologies and polices for better operation of VSLS.

Influence of PECVD SiNx Layer on Multicrystalline Silicon Solar Cell (PECVD SiNx 박막의 다결정 실리콘 태양전지에 미치는 영향)

  • Kim, Jeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.7
    • /
    • pp.662-666
    • /
    • 2005
  • Silicon nitride $(SiN_x)$ film is a promising material for anti-reflection coating and passivation of multicrystalline silicon (me-Si) solar cells. In this work, a plasma-enhanced chemical vapor deposition (PECVD) system with batch-type reactor tube was used to prepare highly robust $SiN_x$ films for screen-printed mc-Si solar cells. The Gas flow ratio, $R=[SiH_4]/[NH_3]$, in a mixture of silane and ammonia was varied in the range of 0.0910.235 while maintaining the total flow rate of the process gases to 4,200 sccm. The refractive index of the $SiN_x$ film deposited with a gas flow ratio of 0.091 was measured to be 2.03 and increased to 2.37 as the gas flow ratio increased to 0.235. The highest efficiency of the cell was $14.99\%$ when the flow rate of $SiH_4$ was 350 sccm (R=0.091). Generally, we observed that the efficiency of the mc-Si solar cell decreased with increasing R. From the analysis of the reflectance and the quantum efficiency of the cell, the decrease in the efficiency was shown to originate mainly from an increase in the surface reflectance for a high flow rate of $SiH_4$ during the deposition of $SiN_x$ films.

Decolorization kinetics and characteristics of the azo dye acid red 18 in MSBR system at various HRTs and SRTs

  • Zonoozi, M. Hasani;Moghaddam, M.R. Alavi;Maknoon, R.
    • Membrane and Water Treatment
    • /
    • v.5 no.4
    • /
    • pp.281-293
    • /
    • 2014
  • The present work aimed to study the decolorization kinetics and characteristics of a selected azo dye under the influence of two key operational parameters including hydraulic retention time (HRT) and solid retention time (SRT). The decolorization efficiency and the two important criteria of k and normalized k (k/MLSS) were evaluated in lab-scale membrane sequencing batch reactors (MSBRs) at various HRTs of 48, 24 and 16 h (with constant SRT) and in addition, at various SRTs of infinity, 40 and 10 d (with constant HRT). According to the obtained results, both zero and first-order kinetics were properly fitted the decolorization profiles of the selected azo dye in all of the applied HRTs and SRTs. Increase of both HRT and SRT positively affected the decolorization efficiency. More MLSS concentrations corresponded to the lower HRTs and the higher SRTs resulted in higher decolorization rate constants (k). However, the effect of reducing the HRT was not compensated by increase of the MLSS concentration in order to reach higher decolorization efficiency. In addition, increase of the decolorization efficiency, as a consequence of the higher MLSS concentrations at longer SRTs, was restrained by decrease of the time-limited decolorization capability of biomass (represented by normalized k). Evaluation of both k and normalized k is suggested in order to have a more precise study on the decolorization kinetics and characteristics.

On the Improvement of the Combustibility of Waste Plastics used in Blast Furnace

  • Ban, Bong-Chan;Choi, Jin-Shik;Kim, Dong-Su
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.751-754
    • /
    • 2001
  • A possibility of using waste plastics as a source of secondary fuel in blast furnace has been of recent interest. The success of this process, however, will be critically dependent upon the optimization of operating systems. for instance, the supply of waste plastics must be reliable as well as economically attractive compared with conventional secondary fuels such as heavy oil, natural gas and pulverized coal. In this work, we put special importance on the improvement of the combustibility of waste plastics as a way to enhance energy efficiency in blast furnace. As experimental variables to approach this target, the effects of plastic particle size, blast temperature, and the level of oxygen enrichment were investigated using a custom-made blast model designed to simulate a real furnace. Lastly, the combustion efficiency of the mixture of waste plastics and pulverized coal was tested. The observations made from these experiments led us to the conclusion that with the increase of both blast temperature and the level of oxygen enrichment, and with the decrease of particle size, the combustibility of waste PE could be improved at a given distance from tuyere. Also it was found that the efficiency of coal combustion decreased with the addition of plastics; however, the combustion efficiency of mixture could be comparable at longer distance from tuyere.

  • PDF

Performance analysis of hubless rim-driven thruster based on the number of blades: a CFD approach (날개수에 따른 허브리스 림 추진기의 성능 분석 : CFD를 이용한 접근)

  • Hyoung-Ho KIM;Chang-Je LEE
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.60 no.1
    • /
    • pp.80-86
    • /
    • 2024
  • We analyzed the performance of hubless rim propellers based on the number of blades, maintaining a fixed pitch ratio and expanded area ratio, using computational fluid dynamics (CFD). Thrust coefficient, torque coefficient and efficiency according to the number of blades were analyzed. In addition, the pressure distribution on the discharge and suction sides of the blade was analyzed. As the advance ratio increases, the thrust coefficient decreases. The highest thrust was shown when the advance ratio was lowest. For the three, four, five and six-blades, the torque coefficient tended to decrease as the advance ratio increased. In the case of seven and eight-blades, the torque coefficient tended to increase as the advance ratio increased. The maximum efficiency was found when the advance ratio was 0.8. When the three-blade, it showed high efficiency at all advance ratios. A high pressure distribution was observed at the leading edge of the discharge blade, and a low pressure distribution was observed at the trailing edge. Applying a hubless rim-driven thruster with the three-blade can generate higher thrust and increase work efficiency.

Li:Al cathode layer and its influence on interfacial energy level and efficiency in polymer-based photovoltaics

  • Park, Sun-Mi;Jeon, Ji-Hye;Park, O-Ok;Kim, Jeong-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.72-72
    • /
    • 2010
  • Recent development of organic solar cell approaches the level of 8% power conversion efficiency by the introduction of new materials, improved material engineering, and more sophisticated device structures. As for interface engineering, various interlayer materials such as LiF, CaO, NaF, and KF have been utilized between Al electrode and active layer. Those materials lower the work function of cathode and interface barrier, protect the active layer, enhance charge collection efficiency, and induce active layer doping. However, the addition of another step of thin layer deposition could be a little complicated. Thus, on a typical solar cell structure of Al/P3HT:PCBM/PEDOT:PSS/ITO glass, we used Li:Al alloy electrode instead of Al to render a simple process. J-V measurement under dark and light illumination on the polymer solar cell using Li:Al cathode shows the improvement in electric properties such as decrease in leakage current and series resistance, and increase in circuit current density. This effective charge collection and electron transport correspond to lowered energy barrier for electron transport at the interface, which is measured by ultraviolet photoelectron spectroscopy. Indeed, through the measurement of secondary ion mass spectroscopy, the Li atoms turn out to be located mainly at the interface between polymer and Al metal. In addition, the chemical reaction between polymer and metal electrodes are measured by X-ray photoelectron spectroscopy.

  • PDF

Geometrical Effects of an Active Casing Treatment on Aerodynamic Performance of a Centrifugal Compressor (능동형 케이싱 트리트먼트의 형상 변화가 원심압축기의 공력성능에 미치는 영향)

  • Ma, Sang-Bum;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.4
    • /
    • pp.5-12
    • /
    • 2016
  • In this study, a parametric study on a cavity as casing treatment of a centrifugal compressor has been conducted using three-dimensional Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model. Two kinds of cavity were applied at choke and surge conditions, respectively, in this work. Inlet and outlet port widths, angle of outlet port, and length of cavity were chosen as the geometric parameters and investigated to find their effects on the aerodynamic performances such as adiabatic efficiency at design mass flow rate and stall margin of the centrifugal compressor. It was found that the aerodynamic performances of the centrifugal compressor were affected considerably by the four geometric parameters. The adiabatic efficiency was hardly changed by the geometric parameters, excepts for the angle of outlet port. With an increase in the angle of outlet port, the adiabatic efficiency and the stall margin decreased. The stall margin was more sensitive to the outlet port width than to the other geometric parameters. And, with a decrease in the outlet port width, the stall margin increased by 2% compared to that of the reference.

Effect of Poly(ethylene glycol)Grafting on Polyethylenimine as a Gene Transfer Vector in vitro

  • Choe, Jin Hui;Choe, Jun Sik;Seo, Hye Ran;Park, Jong Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.46-52
    • /
    • 2001
  • To evaluate the non-ionic polymer, poly(ethylene glycol) (PEG), as a component in cationic copolymers for non-viral gene delivery systems, PEG was coupled to polyethylenimine (PEI). We present the effects of different degrees and shapes of pegylation of PEI on cytotoxicity, water solubility and transfection efficiency. This work reports the synthesis and characterization of a series of cationic copolymers on the basis of the conjugates of PEI with PEG. The modified molecules were significantly less toxic than the original polymer. Moreover, the chemical modification led to enhancement of their solubility. The comparison of pegylated PEIs with different degrees of derivation showed that all the polymers tested reached comparable levels of transgene expression to that of native PEI. As assessed by agarose gel electrophoresis, even highly substituted PEI derivatives were still able to form polyionic complexes with DNA. However, aside from an increase in solubility and retention of the ability to condense DNA, methoxy-PEG-modified PEIs resulted in a significant decrease in the transfection activity of the DNA complexes. In fact, the efficiency of the copolymer was compromised even at a low degree of modification suggesting that the PEG action resulting from its shape is important for efficient gene transfer. The mode of PEG grafting and the degree of modification influenced the transfection efficiency of PEI.