• Title/Summary/Keyword: Decoupled Method

Search Result 205, Processing Time 0.025 seconds

Control of a Unicycle Robot using a Non-model based Controller (비 모델 외바퀴 로봇의 제어)

  • An, Jae-Won;Kim, Min-Gyu;Lee, Jangmyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.5
    • /
    • pp.537-542
    • /
    • 2014
  • This paper proposes a control system to keep the balance of a unicycle robot. The robot consists of the disk and wheel, for balancing and driving respectively, and the tile angle is measured and used for balancing by the IMU sensor. A PID controller is designed based on a non-model based algorithm to prove that it is possible to control the unicycle robot without any approximated linear system model such as the sliding mode control algorithm. The PID controller has the advantage that it is simple to design the controller and it does not require an unnecessary complex formula. In this paper, assuming that the pitch and roll axis are dynamically decoupled, each of the two controllers are designed separately. A reaction wheel pendulum method is used for the control of the roll axis, that is, for balancing and an inverted pendulum concept is used for the control of the pitch axis. To confirm the performance of the proposed controllers using MATLAB Simulink, the dynamic equations of the robot are derived.

Analysis of Seismic Response due to the Dynamic Coupling Between a Primary Structure and Secondary System (구조물과 부계통간의 연계방법에 따른 지진응답 분석)

  • Jung, Kwangsub;Kwag, Shinyoung;Choi, In-Kil;Eem, Seunghyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.87-93
    • /
    • 2020
  • Seismic responses due to the dynamic coupling between a primary structure and secondary system connected to a structure are analyzed in this study. The seismic responses are compared based on dynamic coupling criteria and according to the error level in the natural frequency, with the recent criteria being reliant on the error level in the spectral displacement response. The acceleration responses and relative displacement responses of a primary structure and a secondary system for a coupled model and two different decoupled models of two degrees-of-freedom system are calculated by means of the time integration method. Errors in seismic responses of the uncoupled models are reduced with the recent criteria. As the natural frequency of the secondary system increases, error in the natural frequency decreases, but seismic responses of uncoupled models can be underestimated compared to that of coupled model. Results in this paper can help determine dynamic coupling and predict uncoupled models' response conservatism.

Design and Analysis of Novel 12/14 Hybrid Pole Type Bearingless Switched Reluctance Motor with Short Flux Path

  • Xu, Zhenyao;Zhang, Fengge;Lee, Dong-Hee;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.705-713
    • /
    • 2012
  • In this paper, a novel 12/14 hybrid pole type bearingless switched reluctance motor (BLSRM) with short flux path and no flux-reversal in the stator is proposed. The proposed BLSRM has separated rotating torque and suspending force poles. Because of independent characteristics between torque and suspending force poles, the torque control can be decoupled from the suspending force control. Due to the short flux path without any reversal flux, compared to the 8/10 hybrid stator pole BLSRM, the output torque is significantly improved and the air-gap is easier to control. Meanwhile, basic design principle for the proposed structure is described. To verify the proposed structure, finite element method (FEM) is employed to get characteristics of the proposed structure and 8/10 hybrid stator pole BLSRM. Based on the analysis, a prototype of the proposed BLSRM is designed and manufactured. Finally, validity of the proposed structure is verified by the experimental results.

The Design and Implementation of an Available Bandwidth Measurement Scheme in the K*Grid System

  • Hahm, Seong-Il;Cho, Seong-Ho;Choi, Han;Kim, Chong-Kwon;Lee, Pill-Woo
    • Journal of Information Processing Systems
    • /
    • v.2 no.2
    • /
    • pp.101-106
    • /
    • 2006
  • Grid computing is an emerging technology that enables global resource sharing. In Korea, the $K^*$Grid provides an extremely powerful research environment to both industries and academia. As part of the $K^*$Grid project, we have constructed, together with the Korea Institute of Science and Technology Information and a number of domestic universities, a supercomputer Grid test bed which connects several types of supercomputers based on the globus toolkit. To achieve efficient networking in this Grid testbed, we propose a novel method of available bandwidth measurement, called Decoupled Capacity measurement with Initial Gap (DCIG), using packet trains. DCIG can improve the network efficiency by selecting the best path among several candidates. Simulation results show that DCIG outperforms previous work in terms of accuracy and the required measurement time. We also define a new XML schema for DCIG request/response based on the schema defined by the Global Grid Forum (GGF) Network Measurement Working Group (NM-WG).

Fault Location for Incomplete-Journey Double-Circuit Transmission Lines on Same Tower Based on Identification of Fault Branch

  • Wang, Shoupeng;Zhao, Dongmei;Shang, Liqun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1754-1763
    • /
    • 2017
  • This paper analyses the characteristics of incomplete-journey double-circuit transmission lines on the same tower formed by single-circuit lines and double-circuit lines, and then presents a fault location algorithm based on identification of fault branch. With the relationship between the three-phase system and the double-circuit line system, a phase-mode transformation matrix for double-circuit lines can be derived. Based on the derived matrix, the double-circuit lines with faults can be decoupled, and then the fault location for an incomplete-journey double-circuit line is achieved by using modal components in the mode domain. The algorithm is divided into two steps. Firstly, the fault branch is identified by comparing the relationships of voltage amplitudes at the bonding point. Then the fault location, on the basis of the identification result, is calculated by using a two-terminal method, and only the fault distance of the actual fault branch can be obtained. There is no limit on synchronization of each terminal sampling data. The results of ATP-EMTP simulation show that the proposed algorithm can be applied within the entire line and can accurately locate faults in different fault types, fault resistances, and fault distances.

Effect of blockage on the drag of a triangular cylinder

  • Yeung, W.W.H.
    • Wind and Structures
    • /
    • v.12 no.1
    • /
    • pp.49-61
    • /
    • 2009
  • A method is presented to estimate the form drag and the base pressure on a triangular cylinder in the presence of blockage effect. The Strouhal number, which is found to increase with the flow constriction experimentally by Ramamurthy & Ng (1973), may be decoupled from the blockage effect when re-defined by using the velocity at flow separation and a theoretical wake width. By incorporating this wake width into the momentum equation by Maskell (1963) for the confined flow, a relationship between the form drag and the base pressure is derived. Independently, the experimental data of surface pressure from Ramamurthy & Lee (1973) are found to be independent of the blockage effect when expressed in terms of a modified pressure coefficient involving the pressure at separation. Using the potential flow model by Parkinson & Jandali (1970) and its subsequent development in Yeung & Parkinson (2000) for the unconfined flow, a linear relation between the pressure at separation and the form drag is formulated. By solving the two equations simultaneously with a specified blockage ratio and an apex angle of the triangular cylinder, the predictions of the drag and the base pressure are in reasonable agreement with experimental data. A new theoretical relationship for the Strouhal number, pressure drag coefficient and base pressure proposed in this study allows the confinement effect to be appropriately taken into consideration. The present approach may be extended to three-dimensional bluff bodies.

Estimating Influence of Local and Neighborhood Emissions on Ozone Concentrations over the Kwang-Yang Bay based on Air Quality Simulations for a 2010 June Episode (대기질 모사를 통한 인접지역 배출량이 광양만 오존농도에 미치는 영향분석 - 2010년 6월 사례를 중심으로)

  • Kim, Soon-Tae;Lee, Chong-Bum
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.5
    • /
    • pp.504-522
    • /
    • 2011
  • Simulations of CMAQ with the High-order Decoupled Direct Method (HDDM) for a 2010 June episode are applied to estimate the influence of local and neighborhood emissions on ozone concentrations in the Kwang-Yang Bay (KYB) area. In order to examine ozone response to reductions in $NO_x$ and VOC emissions from KYB and Gyeongsang, ozone isopleths are generated with the first and second-order sensitivity coefficients from HDDM simulations at three sites; Taein, Samil, and Gwangmoo. Simulations show that reduction in KYB $NO_x$ may increase ozone over the sites. On the contrary, $NO_x$ reduction from Gyeongsang may decrease ozone at the sites when transport of ozone and its precursors from upwind Gyeongsang is potentially high. However, VOC reductions from KYB and Gyeongsang are favorable to lower ozone over KYB. The study implies that emission reductions for both local and neighboring areas are likely more effective to bring KYB to ozone attainment.

Estimation of the Hydrodynamic Coefficients for the Deep-sea UUV "HEMIRE" (심해용 무인 잠수정의 동역학 계수의 추정에 관한 연구)

  • Baek, Hyuk;Kim, Ki-Hun;Jun, Bong-Huan;Lee, Pan-Mook;Lim, Yong-Kon
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.97-105
    • /
    • 2008
  • This paper represents the experimental identification of a finite-dimensional dynamical plant model for the HEMIRE Remotely Operated Vehicle. The experiments were conducted during sea trials in the East Sea in October 2006 and peer testing by the South Sea Research Institute in January 2007. A least-squares method was employed to identify decoupled single degree-of-freedom plant dynamical models for the X, Y, Z and heading degree-of-freedom from experimental data. The performance of the identified plant dynamical model was evaluated by directly comparing simulations of the identified plant model to the experimentally observed motion data from the actual vehicle.

A New Method for Elimination of Zero-Sequence Voltage in Dual Three-Level Inverter Fed Open-End Winding Induction Motors

  • Geng, Yi-Wen;Wei, Chen-Xi;Chen, Rui-Cheng;Wang, Liang;Xu, Jia-Bin;Hao, Shuang-Cheng
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.67-75
    • /
    • 2017
  • Due to the excessive zero-sequence voltage in dual three-level inverter fed open-end winding induction motor systems, zero-sequence circumfluence which is harmful to switching devices and insulation is then formed when operating in a single DC voltage source supplying mode. Traditionally, it is the mean value instead of instantaneous value of the zero-sequence voltage that is eliminated, through adjusting the durations of the operating vectors. A new strategy is proposed for zero-sequence voltage elimination, which utilizes unified voltage modulation and a decoupled SVPWM strategy to achieve two same-sized equivalent vectors for an angle of $120^{\circ}$, generated by two inverters independently. Both simulation and experimental results have verified its efficiency in the instantaneous value elimination of zero-sequence voltage.

Performance Analysis of Three-Phase Phase-Locked Loops for Distorted and Unbalanced Grids

  • Li, Kai;Bo, An;Zheng, Hong;Sun, Ningbo
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.262-271
    • /
    • 2017
  • This paper studies the performances of five typical Phase-locked Loops (PLLs) for distorted and unbalanced grid, which are the Decoupled Double Synchronous Reference Frame PLL (DDSRF-PLL), Double Second-Order Generalized Integrator PLL (DSOGI-PLL), Double Second-Order Generalized Integrator Frequency-Lock Loop (DSOGI-FLL), Double Inverse Park Transformation PLL (DIPT-PLL) and Complex Coefficient Filter based PLL (CCF-PLL). Firstly, the principles of each method are meticulously analyzed and their unified small-signal models are proposed to reveal their interior relations and design control parameters. Then the performances are compared by simulations and experiments to investigate their dynamic and steady-state performances under the conditions of a grid voltage with a negative sequence component, a voltage drop and a frequency step. Finally, the merits and drawbacks of each PLL are given. The compared results provide a guide for the application of current control, low voltage ride through (LVRT), and unintentional islanding detection.