• Title/Summary/Keyword: Decomposition rate

Search Result 1,188, Processing Time 0.027 seconds

A Study on the Alkali Hydrolysis of PET fabrics with Ultrasonic Application(II)- Surface Porosity and Oligomer Analysis - (초음파를 적용한 PET 직물의 알칼리 가수분해에 관한 연구(II) - 기공특성과 올리고머 분석 -)

  • 김삼수;서말용;박성우;윤태희;이승구;허만우
    • Textile Coloration and Finishing
    • /
    • v.14 no.6
    • /
    • pp.305-312
    • /
    • 2002
  • In order to give a silk-like touch to PET fabrics, the PET fabrics were treated with NaOH alkaline solution in various conditions. In alkaline treatment, the liquor flow type pilot weight reduction apparatus with magnetostrictive ultrasonic transducer was used for the study. The effects of ultrasonic application, treatment time and temperature at NaOH 4% and 6"A solution on the decomposition rate of PET fabrics. From the results of the decomposition rate of PET fabrics, the qualitative and quantitative analysis of oligomer after decomposition of PET fabrics carried out by the HPLC. On the other hand, the surface pore characteristics of decomposition PET fabrics measured by porosimetery. The pore characteristics on the surface of treated PET fiber depended on the decomposition rate and did not depend on the ultrasonic cavitation. The pore diameter of alkaline untreated PET fiber were 15A and those of treated PET fibers were 5~6$\AA$ at the maximum pore volume. The average pore sizes of fiber before and after treatment were 141 h and 160h, respectively. Total amount of oligomer of the untreated PET fibers were 1.70wt% and 67.7% of total oligomer occupied with PET cyclic trimer and PET cyclic tetramer. Total amount of oligomer of fiber with 26.9% and 48.0% of weight loss without ultrasonic application were 1.78wt% and 1.79wt%, respectively. Also total amount oligomer of fibers which were reduced 27.7% and 48.2% of weight loss with ultrasonic application were 1.74wt%. This result showed that the removal rate of oligomer in the process of alkaline hydrolysis with ultrasonic higher than that of without ultrasonic application.tion.

Kinetics of Pyrolysis Degradation of Cured Phenol Resin (SC-1008) (I). (경화된 페놀 수지 (SC-1008)의 열분해 반응에 관한 연구(I).)

  • 김연철;강희철;예병한;배주찬
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.137-144
    • /
    • 1996
  • The kinetic coefficients far decomposition of the cured phenol resin (SC-1008) using a modified Arrhenius relationship have been determined from thermogavimetric analyses (TGA). The kinetic parameters were determined by multiple heating rate technique developed by Freideman and Henderson. Weight loss (decomposition) and weight loss rate (decomposition rate)were measured and recorded for three heating rates; $5^{\circ}C$/min ,$10^{\circ}C$/min, and $20^{\circ}C$/min. Relatively good agreement was obtained between measured and calculated decomposition as a function of temperature. By separating the reaction, the reaction order and pre exponential factor become empirical parameters which provide a "best fit" of the data. However, this method yields an extremely accurate reproduction of the thermograms over a wide range of heating rates. This is the desired result for kinetic parameters used in thermal models.al models.

  • PDF

Weight Loss and Nutrients Dynamics during the Decomposition of Fine Roots

  • Mun, Hyeong-Tae;Pyo, Jae-Hoon;Shin, Chang-Hwan;Namgung, Jeong;Kim, Jeong-Hee
    • The Korean Journal of Ecology
    • /
    • v.25 no.1
    • /
    • pp.41-44
    • /
    • 2002
  • Weight loss, N and P dynamics during decomposition of fine roots (<2mm) of alder(Alnus japonica), oak (Quercus acutissima) and pitch pine(Pinus rigida) were studied for 33 months in Kongju, Korea. After 33 months, remaining weight of fine roots of alder, oak and pitch pine was 29.2%, 47.7% and 53.4% of the initial weight, respectively. The decomposition rate constant (k) for alder, oak and pitch pine was 0.448 $yr^1$, 0.269 $yr^1$, 0.228 $yr^1$, respectively. Initial concentration of N and P in fine roots was 10.32mg/g and 0.69mg/g for alder, 6.20mg/g and 0.37mg/g for oak and 7.26mg/g and 0.44mg/g for pitch pine, respectively. Initial concentration of N and P in alder were higher than those in oak and pitch pine. After 33 months, remaining N and P in fine roots was 39.5$\%$ and 31.8$\%$ for alder, 59.4$\%$ and 57.8$\%$ for oak, 63.0$\%$ and 83.4$\%$ for pitch pine, respectively. Decomposition rate and the rate of N released from decomposing fine roots was positively correlated with the initial N concentration of the fine roots.

Decomposition of Gas-Phase Benzene on TiO2 Coated Alumina Balls by Photocatalytic Reaction (이산화티탄이 코팅된 알루미나 볼에서 광촉매 반응에 의한 기상벤젠의 분해)

  • Lee Nam-Hee;Jung Sang-Chul;Sun Il-Sik;Cho Duk-Ho;Shin Seung-han;Kim Sun-Jae
    • Korean Journal of Materials Research
    • /
    • v.14 no.6
    • /
    • pp.407-412
    • /
    • 2004
  • Photo decomposition of gas phase benzene by $TiO_2$ thin films chemically deposited on alumina balls were investigated under UV irradiation. Photo decomposition rates were measured in real time during the reaction using a photo ionization detector, which ionizes C-H bonding of benzene molecules and then converts into volatile organic compounds (VOCs) concentrations. From the measuring results, the VOCs concentration increased instantly when IN irradiated because C-H bonds of benzene molecules strongly absorbed on the surface of $TiO_2$ films before the IN irradiation was destroyed by photo decomposition. After that, the VOCs concentration decreased with increasing surface area of $TiO_2$ and reaction time under the IN irradiation. At the optimal conditions for the photo decomposition of gas phase benzene, the reaction rate of the photo decomposition for high concentrations (over 60 ppm) was slow but that of relatively low concentration (under 60 ppm) was fast, due to limited surface area of $TiO_2$ thin films for the reaction. Thus, it is concluded that the photo decomposition rate was mainly affected by the surface area of $TiO_2$ or absorption reaction.

A study of decomposition of sulfur oxides using Composite catalyst by plasma reactions (복합촉매를 이용한 플라즈마 반응에 의한 황산화물의 제거에 관한 연구)

  • Woo, In-Sung;Hwang, Myung-Hwan;Kim, Da-Young;Kim, KwanJoong;Kim, Sung-Tea;Park, Hwa-Young
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2013.04a
    • /
    • pp.655-668
    • /
    • 2013
  • In this study, a combination of the plasma discharge in the reactor by the reaction surface discharge reactor complex catalytic reactor and air pollutants, hazardous gas SOx, change in frequency, residence time, and the thickness of the electrode, the addition of simulated composite catalyst composed of a variety of gases, including decomposition experiments were performed by varying the process parameters. 20W power consumption 10kHz frequency decomposition removal rate of 99% in the decomposition of sulfur oxides removal experiment that is attached to the titanium dioxide catalyst reactor experimental results than if you had more than 5% increase. If added to methane gas was added, the removal efficiency increased decomposition, the oxygen concentration increased with increasing degradation rate in the case of adding carbon dioxide decreased.

  • PDF

Decomposition of Trchloroethylene/Air Mixture by Electron Beam Irradiation in a Flow Reactor (전자빔을 이용한 흐름반응기에서의 Trichloroethylene/Air 분해)

  • ;;;Tatiana Stuchinskaya
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.1
    • /
    • pp.97-104
    • /
    • 2001
  • Decomposition of trichloroethlyene(TCE) in electron beam irradiation was examined on order to obtain information on the treatment of VOC in air. Air containing vaporized TCE has been studied in a flow reactor with different reaction environments, at various initial TCE concentration and in the presence and absence of water vapor. Maximum decomposition was observed in oxygen reaction environment and the degree of decomposition was about 99% at 20kGy for 2,000ppm initial TCE. The concentration of TCE exponentially decreased with dose in air and pure oxygen. The effect of water vapor on TCE decomposition efficiency was examined. The decomposition rate of TCE in the presence of water vapor (5,600 ppm) was approximately 10% higher than that in the absence of water vapor. Dichloroacetic acid, dichloroacethyl chloride and dichloroethyl ester acid were identified as primary products of this reaction adn were decomposed and oxidized to yield CO and $CO_2$. Perchloroethylene, hexachloroethane, chloroform and carbon tetrachloride were also observed as highly chlorinat-ed by products.

  • PDF

Decomposition of Livestock Manure in Soils Cultivated with Chinese Cabbage along an Altitude Gradient

  • Zhang, Yong-Seon;Lee, Gye-Jun;Lee, Jeong-Tae;Sonn, Yeon-Kyu;Yun, Hong-Bae;Kim, Myung-Sook
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.3
    • /
    • pp.203-208
    • /
    • 2013
  • This study was conducted to investigate decomposition of livestock manure in soils cultivated with Chinese cabbage along an alitude gradient. The experiments were conducted in Kangreung (17 m above sea level), Bongpyeong (430 m above sea level), and Daekwanryeong (800 m above the sea level) in order to assess the decomposition rate and accumulations of livestock manures depending on different altitudes. During chinese cabbage cultivation, the decomposition ratios of organic matter derived form livestock manure expressed as % of the initial organic matter content were 42~48% for Kangreung, 26~29% for Bongpyeong and 10~14% for Daekwanryeong. Changes in air temperature with altitude might be a main factor affecting manure decomposition rates.

Effect of Ground Compostable Household Wastes on a Small Bin Composting (소형용기에 의한 퇴비화에 있어서 퇴비화 가능한 가정 폐기물의 분쇄 효과)

  • Seo, Jeoung-Yoon;Han, Jong-Phil;Hwang, Myun-Hoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.3
    • /
    • pp.135-142
    • /
    • 2001
  • Compostable household wastes(mainly food wastes), after waste papers and cardboard being removed, were daily fed into small bins and mixed thoroughly while the air was supplied into the bin. Three small bins were employed: in case I, only recycled compost was composted, after being once fed at the beginning of composting, in case II, compostable household wastes(less than 50 mm) torn roughly by the hands with recycled compost, and in case III, compostable household wastes(less than 2 mm) ground by a kitchen mixer for vegetables with recycled compost. The straight-line was maintained between the wet or the dry residual mass of composting mixture versus composting time date(the coefficient of determination $R^2{\geq}0.98$ for the wet and $R^2{\geq}0.90$ for the dry). The decomposition rate of each composted material was estimated during composting. The total weight reduction rate after 30 days was 67.86% and 66.14% for case II and III, respectively. For case II, the daily weight reduction 6.82% and the daily decomposition rate 8.81% with the composting mixture, but the daily weight reduction rate was 56.43% and the daily decomposition rate 19.26% with only compostable household wastes. For case III, the daily reduction rate was 6.93% and the daily decomposition rate 7.70% with the composting mixture, but the daily weight reduction rate was 53.30% and the daily decomposition rate 22.95% with only compostable household wastes. The physicochemical characteristics of composting mixture did not show much difference between case II and III as was expected.

  • PDF

Risk evaluation of EVA dust with oxidizer by a pressure vessel (압력용기시험에 의한 EVA분진의 혼촉 위험성 평가)

  • 이창우;김정환;현성호
    • Fire Science and Engineering
    • /
    • v.13 no.4
    • /
    • pp.7-12
    • /
    • 1999
  • Thermal properties of EVA dust and its risks of coexisting with oxidizer were investigated by a pressure vessel. The decomposition of EVA dust with temperature using DSC and the weight loss with temperature using TGA were also investigated to find the thermal hazard of EVA dust. Using the pressure vessel which can estimate ignition and explosion of EVA dust coexisting with oxidizer by bursting of a rupture disc, many experiments have been conducted by varying the orifice diameter, heating rate, the weight ratio of the sample coexisting with oxidizer, and the species of oxidizer. According to the results of the thermal analysis of EVA dust, a little change of the decomposition initiation temperature with the heating rate could be found and the decomposition temperature zone of EVA dust was 250 to 50$0^{\circ}C$. The risk of EVA dust coexisting with oxidizer was increased as the orifice diameter was decreased. On the other hand, it was increased as the heating rate and the weight ratio of the sample coexisting with oxidizer were increased. In addition, the risk of EVA dust coexisting with oxidizer was affected by the decomposition temperature of the sample and oxidizer, respectively, at slow heating rate, but it was affected by the oxygen weight percent of oxidizer at fast heating rate.

  • PDF

Foaming Characteristics and Physical Properties of Ethylene Vinyl Acetate Copolymer Foams (Ethylene Vinyl Acetate Copolymer 발포체의 발포특성 및 물리적 특성)

  • Kim, Jin-Tae;Son, Woo-Jung;Ahn, Byung-Hyun;Kim, Won-Ho
    • Elastomers and Composites
    • /
    • v.36 no.1
    • /
    • pp.52-60
    • /
    • 2001
  • Physical properties of foams depend on the density of foams, Physical properties of base polymers, open ceil contents, and cell structures including the size, size distribution, shape of ceil and the thickness of membrane and strut. The density of foam is affected by raw materials, concentration oi crosslinking agent and blowing agent and process parameters such as processing technique and condition. Ethylene vinyl acetate copolymer(EVA) foam is a crosslinked cellular material. The foaming characteristics and physical properties of EVA foam are affected by decomposition rate of blowing agent. In this study, the decomposition rate of blowing agent and crosslinking rate, foaming characteristics and physical properties of foams were evaluated. The slow decomposition rate of blowing agent results in low density foam, good shock absorption property and uniform cell size distribution compared to the high decomposition rate of blowing agent.

  • PDF