• 제목/요약/키워드: Decomposed Network

검색결과 75건 처리시간 0.018초

가려진 얼굴의 인식 (Recognition of Occluded Face)

  • 강현철
    • 한국정보통신학회논문지
    • /
    • 제23권6호
    • /
    • pp.682-689
    • /
    • 2019
  • 부분 기반 영상 표현(part-based image representation)에서는 영상의 부분적인 모습을 기저 벡터로 표현하고 기저 벡터의 선형 조합으로 영상을 분해하며, 이 때 기저 벡터의 계수가 곧 물체의 부분적인 특징을 의미하게 된다. 본 논문에는 부분 기반 영상 표현 기법인 비음수 행렬 분해(non-negative matrix factorization, NMF)를 이용하여 얼굴 영상을 표현하고 신경망 기법을 적용하여 가려진 얼굴을 인식하는 얼굴 인식을 제안한다. 표준 비음수 행렬 분해, 투영 경사 비음수 행렬 분해, 직교 비음수 행렬 분해를 이용하여 얼굴 영상을 표현하였고, 각 기법의 성능을 비교하였다. 인식기로는 학습벡터양자화 신경망을 사용하였으며, 인식기에서의 거리 척도로는 유클리디언 거리를 사용하였다. 실험 결과, 전통적인 얼굴 인식 방법에 비하여 제안한 기법이 가려진 얼굴 인식에 보다 강인함을 보인다.

공간 주파수 합성곱 게이트 트랜스포머를 이용한 시청각 자극에 따른 뇌전도 기반 감정적 스트레스 인식 (Electroencephalogram-based emotional stress recognition according to audiovisual stimulation using spatial frequency convolutional gated transformer)

  • 김형국;정동기;김진영
    • 한국음향학회지
    • /
    • 제41권5호
    • /
    • pp.518-524
    • /
    • 2022
  • 본 논문에서는 합성곱 신경망과 주의집중 메커니즘을 결합하여 뇌파 신호로부터 감정적 스트레스 인식 성능을 향상시키는 방식을 제안한다. 제안하는 방식에서는 뇌파 신호를 5개의 주파수 영역으로 분해하고, 각 주파수 영역에 합성곱 신경망 계층을 사용하여 뇌파 특징의 공간정보를 획득한 후에 게이트 트랜스포머를 이용한 주의집중 메커니즘을 사용하여 각 주파수 대역에서 두드러진 주파수 정보를 학습하고, 주파수 간 대역 매핑을 통해 보완 주파수 정보를 학습하여 최종 주의집중 표현에 반영한다. DEAP 데이터세트와 6명의 피 실험자가 참여한 뇌파 스트레스 인식 실험을 통해, 제안된 방식이 기존 방식과 비교하여 뇌파 기반 스트레스 인식 성능 향상에 효과가 있음을 보여준다.

앙상블 경험적 모드 분해법을 이용한 도시부 단기 통행속도 예측 (Short-term Prediction of Travel Speed in Urban Areas Using an Ensemble Empirical Mode Decomposition)

  • 김의진;김동규
    • 대한토목학회논문집
    • /
    • 제38권4호
    • /
    • pp.579-586
    • /
    • 2018
  • 단기 통행속도 예측을 위해 데이터 기반 비모수적 기법들을 활용한 다양한 연구들이 수행되고 있다. 그럼에도 교통신호 및 교차로로 인한 복잡한 동적 특성을 가지는 도시부의 예측 연구는 상대적으로 부족한 실정이다. 본 연구는 도시부 통행 속도를 예측하기 위해 앙상블 경험적 모드 분해법(EEMD)과 인공신경망(ANN)을 이용한 하이브리드 접근법을 제안하는 것을 목적으로 한다. EEMD는 통행속도의 시계열 자료를 고유모드함수(IMF)와 오차항으로 분해한다. 분해된 IMF는 시간단위의 국지적 특성을 반영하며, ANN을 통해 개별적으로 예측된다. IMF는 원본데이터가 가진 비선형성, 비정상성, 진동 등의 복잡성을 완화하기 때문에, 원래의 통행속도에 비하여 더 정확하게 예측될 수 있다. 예측된 IMF들은 합산되어 예측 통행속도를 표현한다. 본 연구에서 제시된 방법을 검증하기 위하여 대구시의 DSRC로부터 구득된 통행속도 데이터가 활용된다. 성능평가는 도시부 링크 중 특히 예측이 어려운 지점에 대해 수행되었으며, 분석 결과 제시된 모형은 15분 후 예측에 대해 각각 평상시 10.41%, 와해상태시 25.35%의 오차율을 가지며, 단순 ANN 기법에 비하여 우수한 성능을 보이는 것으로 확인된다. 본 연구에서 개발된 모형은 도시교통관리체계의 신뢰성 있는 교통정보를 제공하는 데에 기여할 수 있을 것으로 기대된다.

선택적 주의집중 Hough 변환과 신경망을 이용한 얼굴 검출 (Face Detection Using A Selectively Attentional Hough Transform and Neural Network)

  • 최일;서정익;진성일
    • 대한전자공학회논문지SP
    • /
    • 제41권4호
    • /
    • pp.93-101
    • /
    • 2004
  • 머리가 포함된 얼굴 윤곽선은 5차원의 매개변수들을 가지는 타원 형태와 유사하다. 이 특성은 타원 검출 알고리듬을 얼굴검출 방법에 이용할 수 있도록 한다. 그렇지만 허프 변환으로 5 차원의 매개변수 공간을 구축하기에는 매우 어렵다. 본 논문에서는 선택적 주의집중을 가지는 허프 변환 방법으로 주어진 영상에서 대칭 윤곽선을 가지는 얼굴을 검출하는 방법을 제안한다. 이 방법은 고정된 얼굴의 장단 비율, 그래디언트 정보, 주사선 기반 선택적 방향 분해를 이용하여, 5 차원의 매개변수 공간을 타원의 중심과 특정한 회전 방향을 추정하는 2 차원의 매개변수 공간과 단축의 길이를 추정하는 1 차원의 매개변수 공간으로 분해가 가능하도록 한다. 부가적으로 이 방법에 그래디언트와 지리적인 정보를 결합하는 두 점 선택 제약 조건을 적용하여 복잡한 배경을 가지는 영상에서 허프 변환의 속도를 증대시킨다. 제안하는 허프 변환으로 추출된 후보 얼굴 영역들 가운데에서 얼굴이 아닌 타원 영역들을 다층 퍼셉트론으로 기각시켜 얼굴을 최종적으로 검출한다. 본 논문에서 제안하는 얼굴 검출 방법을 얼굴이 포함된 다양한 영상들에 적용하여 실험한 결과로부터, 제안하는 방법은 처리 속도와 효율성에서 우수함을 확인하였다.

한국어 음소 단위 LSTM 언어모델을 이용한 문장 생성 (Korean Sentence Generation Using Phoneme-Level LSTM Language Model)

  • 안성만;정여진;이재준;양지헌
    • 지능정보연구
    • /
    • 제23권2호
    • /
    • pp.71-88
    • /
    • 2017
  • 언어모델은 순차적으로 입력된 자료를 바탕으로 다음에 나올 단어나 문자를 예측하는 모델로 언어처리나 음성인식 분야에 활용된다. 최근 딥러닝 알고리즘이 발전되면서 입력 개체 간의 의존성을 효과적으로 반영할 수 있는 순환신경망 모델과 이를 발전시킨 Long short-term memory(LSTM) 모델이 언어모델에 사용되고 있다. 이러한 모형에 자료를 입력하기 위해서는 문장을 단어 혹은 형태소로 분해하는 과정을 거친 후 단어 레벨 혹은 형태소 레벨의 모형을 사용하는 것이 일반적이다. 하지만 이러한 모형은 텍스트가 포함하는 단어나 형태소의 수가 일반적으로 매우 많기 때문에 사전 크기가 커지게 되고 이에 따라 모형의 복잡도가 증가하는 문제가 있고 사전에 포함된 어휘 외에는 생성이 불가능하다는 등의 단점이 있다. 특히 한국어와 같이 형태소 활용이 다양한 언어의 경우 형태소 분석기를 통한 분해과정에서 오류가 더해질 수 있다. 이를 보완하기 위해 본 논문에서는 문장을 자음과 모음으로 이루어진 음소 단위로 분해한 뒤 입력 데이터로 사용하는 음소 레벨의 LSTM 언어모델을 제안한다. 본 논문에서는 LSTM layer를 3개 또는 4개 포함하는 모형을 사용한다. 모형의 최적화를 위해 Stochastic Gradient 알고리즘과 이를 개선시킨 다양한 알고리즘을 사용하고 그 성능을 비교한다. 구약성경 텍스트를 사용하여 실험을 진행하였고 모든 실험은 Theano를 기반으로 하는 Keras 패키지를 사용하여 수행되었다. 모형의 정량적 비교를 위해 validation loss와 test set에 대한 perplexity를 계산하였다. 그 결과 Stochastic Gradient 알고리즘이 상대적으로 큰 validation loss와 perplexity를 나타냈고 나머지 최적화 알고리즘들은 유사한 값들을 보이며 비슷한 수준의 모형 복잡도를 나타냈다. Layer 4개인 모형이 3개인 모형에 비해 학습시간이 평균적으로 69% 정도 길게 소요되었으나 정량지표는 크게 개선되지 않거나 특정 조건에서는 오히려 악화되는 것으로 나타났다. 하지만 layer 4개를 사용한 모형이 3개를 사용한 모형에 비해 완성도가 높은 문장을 생성했다. 본 논문에서 고려한 어떤 시뮬레이션 조건에서도 한글에서 사용되지 않는 문자조합이 생성되지 않았고 명사와 조사의 조합이나 동사의 활용, 주어 동사의 결합 면에서 상당히 완성도 높은 문장이 발생되었다. 본 연구결과는 현재 대두되고 있는 인공지능 시스템의 기초가 되는 언어처리나 음성인식 분야에서 한국어 처리를 위해 다양하게 활용될 수 있을 것으로 기대된다.