• Title/Summary/Keyword: Decommissioning of nuclear power plants

Search Result 82, Processing Time 0.029 seconds

Surface removal of stainless steel using a single-mode continuous wave fiber laser to decontaminate primary circuits

  • Song, Ki-Hee;Shin, Jae Sung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3293-3298
    • /
    • 2022
  • Removing radioactive contaminated metal materials is a vital task during the decommissioning of nuclear power plants to reduce the cost of the post-dismantling process. The laser decontamination technique has been recognized as a key tool for a successful dismantling process as it enables a remote operation in radioactive facilities. It also minimizes exposure of workers to hazardous materials and reduces secondary waste, increasing the environmental friendless of the post-dismantling processing. In this work, we present a thorough and efficient laser decontamination approach using a single-mode continuous-wave (CW) laser. We subjected stainless steels to a surface-removal process that repetitively exposes the laser to a confined region of ~75 ㎛ at a high scanning rate of 10 m/s. We evaluate the decontamination performance by measuring the removal depth with a 3D scanning microscope and further investigate optimal removal conditions given practical parameters such as the laser power and scan properties. We successfully removed the metal surface to a depth of more than 40 ㎛ with laser power of 300 W and ten scans, showing the potential to achieve an extremely high DF more than 1000 by simply increasing the number of scans and the laser power for the decontamination of primary circuits.

Issues of New Technological Trends in Nuclear Power Plant (NPPs) for Standardized Breakdown Structure

  • Gebremichael, Dagem D.;Lee, Yunsub;Jung, Youngsoo
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.353-358
    • /
    • 2020
  • Recent efforts to develop a common standard for nuclear power plants (NPPs) with the aim of creating (1) a digital environment for a better understanding of NPPs life-cycle management aspect and (2) engineering data interoperability by using existing standards among different unspecified project participants (e.g., owners/operators, engineers, contractors, equipment suppliers) during plants' life cycle process (EPC, O&M, and decommissioning). In order to meet this goal, there is a need for formulating a standardized high-level physical breakdown structure (PBS) for NPPs project management office (PMO). However, high-level PBS must be comprehensive enough and able to represent the different types of plants and the new trends of technologies in the industry. This has triggered the need for addressing the issues of the recent operational NPPs and future technologies' ramification for evaluating the changes in the NPPs physical components in terms of structure, system, and component (SSC) configuration. In this context, this ongoing study examines the recent conventional NPPs and technological trends in the development of future NPPs facilities. New reactor models regarding the overlap of variant issues of nuclear technology were explored. Finally, issues on PBS for project management are explored by the examination of the configuration of NPPs primary system. The primary systems' configuration of different reactor models is assessed in order to clarify the need for analyzing the new trends in nuclear technology and to formulate a common high-level PBS. Findings and implications are discussed for further studies.

  • PDF

Preliminary Estimation of Activation Products Inventory in Reactor Components for Kori unit 1 decommissioning (고리1호기 해체시의 원자로 구조물에서의 방사회 생성물 재고량 예비평가)

  • Lee, Kyung-Jin;Kim, Hak-Soo;Sin, Sang-Woon;Song, Myung-Jae;Lee, Youn-Keun
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.2
    • /
    • pp.109-116
    • /
    • 2003
  • Based on the necessity to evaluate the activation products inventory during decommissioning lot domestic nuclear power plants, a preliminary estimation of the activation products inventory for Kori unit 1, which is getting close to the end of lifetime, was carried out with ANISN and ORIGEN2 code. In order to calculate neutron nux using ANISN code, the reactor was divided into 9 zones from core to bioshield concrete for radial direction. Also :he cross-section of main nuclides were calibrated with neutron flux in the reactor pressure vessel(RPV) region. The results showed that 95 % of tile total radioactivity in RPV from reactor shutdown to 10 years came from the nuclides of $^{55}Fe,\;^{59}Ni,\;^{63}Ni\;and\;^{60}Co$. And the total radioactivity with cooling of more than 50 years after decommissioning was no more than 0.2 % of at the time of shutdown. Considering the weight of RPV is 210 tons, the total radioactivity of RPV reached to $5.25{\times}10^{6}GBq$ at shutdown time. As compared with the total radioactivity of bioshield concrete at reactor shutdown time, the radioactivity after tooling more than 10 years was below 1 %.

Preliminary Evaluation of Radiological Impact for Domestic On-road Transportation of Decommissioning Waste of Kori Unit 1

  • Dho, Ho-Seog;Seo, Myung-Hwan;Kim, Rin-Ah;Kim, Tae-Man;Cho, Chun-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.4
    • /
    • pp.537-548
    • /
    • 2020
  • Currently, radioactive waste for disposal has been restricted to low and intermediate level radioactive waste generated during operation of nuclear power plants, and these radioactive wastes were managed and disposed of the 200 L and 320 L of steel drums. However, it is expected that it will be difficult to manage a large amount of decommissioning waste of the Kori unit 1 with the existing drums and transportation containers. Accordingly, the KORAD is currently developing various and large-sized containers for packaging, transportation, and disposal of decommissioning waste. In this study, the radiation exposure doses of workers and the public were evaluated using RADTRAN computational analysis code in case of the domestic on-road transportation of new package and transportation containers under development. The results were compared with the domestic annual dose limit. In addition, the sensitivity of the expected exposure dose according to the change in the leakage rate of radionuclides in the waste packaging was evaluated. As a result of the evaluation, it was confirmed that the exposure dose under normal and accident condition was less than the domestic annual exposure dose limit. However, in the case of a number of loading and unloading operations, working systems should be prepared to reduce the exposure of workers.

Evaluation of Exposure Dose and Working Hours for Near Surface Disposal Facility

  • Yeseul Cho;Hoseog Dho;Hyungoo Kang;Chunhyung Cho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.511-521
    • /
    • 2022
  • Decommissioning of nuclear power plants generates a large amount of radioactive waste in a short period. Moreover, Radioactive waste has various forms including a large volumes of metal, concrete, and solid waste. The disposal of decommissioning waste using 200 L drums is inefficient in terms of economics, work efficiency, and radiation safety. Therefore, The Korea Radioactive Waste Agency is developing large containers for the packaging, transportation, and disposal of decommissioning waste. Assessing disposability considering the characteristics of the radioactive waste and facility, convenience of operation, and safety of workers is necessary. In this study, the exposure dose rate of workers during the disposal of new containers was evaluated using Monte Carlo N-Particle Transport code. Six normal and four abnormal scenarios were derived for the assessment of the dose rate in a near surface disposal facility operation. The results showed that the calculated dose rates in all normal scenarios were lower than the direct exposure dose limitation of workers in the safety analysis report. In abnormal scenarios, the work hours with dose rates below 20 mSv·y-1 were calculated. The results of this study will be useful in establishing the optimal radiation work conditions.

An Analysis on the DCGL setting Method of the United States for Demonstrating Nuclear Power Plants Site Release Criteria (국내 원전 부지 해제 기준 준수 입증을 위한 미국의 유도농도기준(DCGL) 설정 방법에 대한 분석)

  • Jeon, Yeo Ryeong;Park, Sang June;Ahn, Seokyoung;Lee, Jong Seh;Kim, Yongmin
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • The U.S. NRC establishes a radiological criteria with regard to restricted or unrestricted use of nuclear plant site after decommissioning in NUREG-1757. According to this, a nuclear plant site can be released in a restricted way or unrestricted way only if a licensee demonstrates that the dose criteria is fulfilled after the site decontamination and remediation. In order to prove compliance with the radiological criteria of site release, LTP(License Termination Plan) must include the site release criteria, site characterization, final survey plan with major radionuclides and DCGL(Derived Concentration Guideline Levels), etc. Based on the decommissioning case of Rancho Seco nuclear power plant in the United States, this paper analyzed a method of setting the DCGL that can be applied to Kori NPP Unit 1 which will be permanently disabled in 2017.

A Radionuclides Suite Selection for Site Characterization and Final Status Survey in the U.S. NPPs (미국의 원전 해체관련 부지특성 및 최종상태 조사를 위한 방사성 오염 핵종 결정 방법에 대한 분석)

  • Zhao, Pengfei;Jeon, Yeo Ryeong;Kim, Yongmin;Lee, Jong Seh;Ahn, Seokyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.3
    • /
    • pp.267-277
    • /
    • 2016
  • For the decommissioning of a nuclear power plant, a site characterization and final status survey require a site-specific suite of radionuclides that could potentially still be present in the site during or after the decontamination processes. The United States Nuclear Regulatory Commission (U.S. NRC) requires a Decommissioning Technical Base Document (DTBD) along with a Site Characterization and Historical Site Assessment (HSA) from the utility for decommissioning to proceed. Both the DTBD and HSA are preliminary components of the Radiological Site Survey investigation process and should be included in the final License Termination Plan (LTP) for site release and reuse consideration from the U.S. NRC and the utility company. This study reviews the United States Nuclear Power Plants (U.S. NPPs) decommissioning cases and is especially focused on the methodologies used for determining a site-specific suite of radionuclides before and during the site characterization and final status surveys. In 2017, Kori-1 will be ready for decommissioning and related preparations are ongoing, this review will help Korea to prepare regulatory guidelines and give technical background for the safe and successful decommissioning of NPPs.

Comparison of Compton Image Reconstruction Algorithms for Estimation of Internal Radioactivity Distribution in Concrete Waste During Decommissioning of Nuclear Power Plant (원전 해체 시 방사성 콘크리트 폐기물 내부 방사능 분포 예측을 위한 컴프턴 영상 재구성 방법의 비교)

  • Lee, Tae-Woong;Jo, Seong-Min;Yoon, Chang-Yeon;Kim, Nak-Jeom
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2
    • /
    • pp.217-225
    • /
    • 2020
  • Concrete waste accounts for approximately 70~80% of the total waste generated during the decommissioning of nuclear power plants (NPPs). Based upon the concentration of each radionuclide, the concrete waste from the decommissioning can be used in the determination of the clearance threshold used to classify waste as radioactive. To reduce the cost of radioactive concrete waste disposal, it is important to perform decontamination before self-disposal or limited recycling. Therefore, it is necessary to estimate the internal radioactivity distribution of radioactive concrete waste to ensure effective decontamination. In this study, the performance metrics of various Compton reconstruction algorithms were compared in order to identify the best strategy to estimate the internal radioactivity distribution in concrete waste during the decommissioning of NPPs. Four reconstruction algorithms, namely, simple back-projection, filtered back-projection, maximum likelihood expectation maximization (MLEM), and energy-deconvolution MLEM (E-MLEM) were used as Compton reconstruction algorithms. Subsequently, the results obtained by using these various reconstruction algorithms were compared with one another and evaluated, using quantitative evaluation methods. The MLEM and E-MLEM reconstruction algorithms exhibited the best performance in maintaining a high image resolution and signal-to-noise ratio (SNR), respectively. The results of this study demonstrate the feasibility of using Compton images in the estimation of the internal radioactive distribution of concrete during the decommissioning of NPPs.

A Study of Cesium Removal Using Prussian Blue-Alginate Beads (프러시안 블루-알지네이트 비드를 이용한 세슘 제거 연구)

  • So-on Park;Su-jung Min;Bum-kyoung Seo;Chang-hyun Roh;Sang-bum Hong
    • Journal of Radiation Industry
    • /
    • v.18 no.1
    • /
    • pp.89-93
    • /
    • 2024
  • Accidents at nuclear facilities and nuclear power plants led to leaks of large amounts of radioactive substances. Of the various radioactive nuclides released, 137Cs are radioactive substances generated during the fission of uranium. Therefore, due to the high fission yield (6.09%), strong gamma rays, and a relatively long half-life (30 years), a rapid and efficient removal method and a study of adsorbents are needed. Accordingly, an adsorbent was prepared using Prussian blue (PB), a material that selectively adsorbs radioactive cesium. As a result of evaluating the adsorption performance with the prepared adsorbent, it was confirmed that 82% of the removal efficiency was obtained, and most of the cesium was rapidly adsorbed within 10 to 15 minutes. The purpose of this study was to adsorb cesium using the Prussian blue alginate bead and to compare the change in detection efficiency according to the amount of adsorbent added for quantitative evaluation. However, in this case, it is difficult to determine the detection efficiency using a standard source with the same conditions as the measurement sample, so the efficiency change of the HPGe detector according to the different heights of Prussian blue was calculated through MCNP simulation using certified standard materials (1 L, Marinelli beaker) for radioactivity measurement. It is expected to derive a relational equation that can calculate detection efficiency through an efficiency curve according to the volume of Prussian blue, quantitatively evaluate the activity at the same time as the adsorption of radioactive nuclides in actual contaminated water and use it in the field of nuclear facility operation and dismantling in the future.

An Approach to the Localization of Technology for a Transport and Storage Container for Very Low-Level Radioactive Liquid Waste

  • Shin, Seung Hun;Choi, Woo Nyun;Yoon, Seungbin;Lee, Un Jang;Park, Hye Min;Kim, Hee Reyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.1
    • /
    • pp.127-131
    • /
    • 2022
  • The structural safety of prototype transport and storage containers for very low-level radioactive liquid waste was experimentally estimated for its localization development. Transport containers for radioactive liquid waste have been researched and developed, however, there are no standardized commercial containers for very low-level radioactive waste in Korea. In this study, the structural safety of the designated IP-2 type container capable of transporting and temporarily storing large amounts of very low-level liquid waste, which is generated during the operation and decommissioning of nuclear power plants, was demonstrated. The stacking and drop tests, which were conducted to determine the structural integrity of the container, verified that there was no external leakage of the contents in spite of its structural deformation due to the drop impact. This study shows the effort required for the localization of the technology used in manufacturing transport and storage containers for very low-level radioactive liquid waste, and the additional structural reinforcement of the container in which the commercial intermediate bulk container (IBC) external frame was coupled.