• Title/Summary/Keyword: Decommissioning Waste

Search Result 323, Processing Time 0.022 seconds

Analysis of Domestic and Overseas Radioactive Waste Maritime Transportation and Dose Assessment for the Public by Sinking Accident (국내·외 방사성폐기물 해상운반 현황 및 침몰사고 시 일반인 선량평가 사례 분석)

  • Ga Eun Oh;Min Woo Kwak;Hyeok Jae Kim;Kwang Pyo Kim
    • Journal of Radiation Industry
    • /
    • v.18 no.1
    • /
    • pp.35-42
    • /
    • 2024
  • Demand for RW transportation is expected to increase due to the continuous generation of RW from nuclear power plants and facilities, decommissioning of plants, and saturation of spent fuel temporary storage facilities. The locational aspect of plants and radiation protection optimization for the public have led to an increasing demand for maritime transportation, necessitating to apprehend the overseas and domestic current status. Given the potential long-term radiological impact on the public in the event of a sinking accident, a pre-transportation exposure assessment is necessary. The objective of this study is to investigate the overseas and domestic RW maritime transportation current status and overseas dose assessment cases for the public in sinking accident. Selected countries, including Japan, UK, Sweden, and Korea, were examined for transport cases, Japan and the U.S were chosen for dose assessment case in sinking accidents. As a result of the maritime transportation case analysis, it was performed between nuclear power plants and reprocessing facilities, from plants to disposal or intermediate storage facilities. HLW and MOX fuel were transported using INF 3 shipments, and all transports were performed low speed of 13 kn or less. As a result of the dose assessment for the public in sinking accident, japan conducted an assessment for the sinking of spent fuel and vitrified HLW, and the U.S conducted for the sinking of spent fuel. Both countries considered external exposure through swimming and working at seashore, and internal exposure through seafood ingestion as exposure pathway. Additionally, Japan considered external exposure through working on board and fishing, and the U.S considered internal exposure through spray inhalation and desalinized water and salt ingestion. Internal exposure through seafood ingestion had the largest dose contribution. The average public exposure dose was 20 years after the sinking, 0.04 mSv yr-1 for spent fuel and 5 years after the sinking, 0.03 mSv yr-1 for vitrified HLW in Japan. In the U.S, it was 1.81 mSv yr-1 5 years after the sinking of spent fuel. The results of this study will be used as fundamental data for maritime transportation of domestic RW in the future.

Melting Characteristics for Radioactive Aluminum Wastes in Electric Arc Furnace (아크 용융로에서 방사성 알루미늄 폐기물의 용융특성)

  • Min, Byung-Youn;Song, Pyung-Seob;Ahn, Jun-Hyung;Choi, Wang-Kyu;Jung, Chong-Hun;Oh, Won-Zin;Kang, Yong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.1
    • /
    • pp.33-40
    • /
    • 2006
  • The characteristics of the aluminum waste melting and the distribution of the radioactive nuclides have been investigated for the estimation on the volume reduction and the decontamination of the aluminum wastes from the decommissioning of the TRIGA MARK it and III research reactors at the Korea Atomic Energy Research Institute(KAERI). The aluminum wastes were melted with the use of the fluxes such as flux $A:NaCl-KCl-Na_3AlF_6$, flux B:NaCl-NaF-KF, flux $C:CaF_2$, and flux $D:LiF-KCl-BaCl_2$ in the DC graphite arc furnace. For the assessment of the distribution of the radioactive nuclides during the melting of the aluminum, the aluminum materials were contaminated by the surrogate nuclides such as cobalt(Co), cesium(Cs) and strontium(Sr). The fluidity of aluminum melt was increased with the addition of the fluxes, which has slight difference according to the type of fluxes. The formation of the slag during the aluminum melting added the flux type C and D was larger than that with the flux A and B. The rate of the slag formation linearly increased with increasing the flux concentration. The results of the XRD analysis showed that the surrogate nuclide was transferred to the slag, which can be easily separated from the melt and then they combined with aluminum oxide to form a more stable compound. The distribution ratio of cobalt in ingot to that in slag was more than 40% at all types of fluxes. Since vapor pressures of cesium and strontium were higher than those that of the host metals at the melting temperature, their removal efficiency from the ingot phase to the slag and the dust phase was by up to 98%.

  • PDF

토양 및 지하수 Investigation 과 Remediation에 대한 현장적용

  • Wallner, Heinz
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.44-63
    • /
    • 2000
  • Situated close to Heathrow Airport, and adjacent to the M4 and M25 Motorways, the site at Axis Park is considered a prime location for business in the UK. In consequnce two of the UK's major property development companies, MEPC and Redrew Homes sought the expertise of Intergeo to remediate the contaminated former industrial site prior to its development. Industrial use of the twenty-six hectare site, started in 1936, when Hawker Aircraft commence aircraft manufacture. In 1963 the Firestone Tyre and Rubber Company purchased part of the site. Ford commenced vehicle production at the site in the mid-1970's and production was continued by Iveco Ford from 1986 to the plant's decommissioning in 1997. Geologically the site is underlain by sand and gravel, deposited in prehistory by the River Thames, with London Clay at around 6m depth. The level of groundwater fluctuates seasonally at around 2.5m depth, moving slowly southwest towards local streams and watercourses. A phased investigation of the site was undertaken, which culminated in the extensive site investigation undertaken by Intergeo in 1998. In total 50 boreholes, 90 probeholes and 60 trial pits were used to investigate the site and around 4000 solid and 1300 liquid samples were tested in the laboratory for chemical substances. The investigations identified total petroleum hydrocarbons in the soil up to 25, 000mg/kg. Diesel oil, with some lubricating oil were the main components. Volatile organic compounds were identified in the groundwater in excess of 10mg/l. Specific substances included trichloromethane, trichloromethane and tetrachloroethene. Both the oil and volatile compounds were widely spread across the site, The specific substances identified could be traced back to industrial processes used at one or other dates in the sites history Slightly elevated levels of toxic metals and polycyclic aromatic hydrocarbons were also identified locally. Prior to remediation of the site and throughout its progress, extensive liaison with the regulatory authorities and the client's professional representatives was required. In addition to meetings, numerous technical documents detailing methods and health and safety issues were required in order to comply with UK environmental and safety legislation. After initially considering a range of options to undertake remediation, the following three main techniques were selected: ex-situ bioremediation of hydrocarbon contaminated soils, skimming of free floating hydrocarbon product from the water surface at wells and excavations and air stripping of volatile organic compounds from groundwater recovered from wells. The achievements were as follows: 1) 350, 000m3 of soil was excavated and 112, 000m3 of sand and gravel was processed to remove gravel and cobble sized particles; 2) 53, 000m3 of hydrocarbon contaminated soil was bioremediated in windrows ; 3) 7000m3 of groundwater was processed by skimming to remove free floating Product; 4) 196, 000m3 of groundwater was Processed by air stripping to remove volatile organic compounds. Only 1000m3 of soil left the site for disposal in licensed waste facilities Given the costs of disposal in the UK, the selected methods represented a considerable cost saving to the Clients. All other soil was engineered back into the ground to a precise geotechnical specification. The following objective levels were achieved across the site 1) By a Risk Based Corrective Action (RBCA) methodology it was demonstrated that soil with less that 1000mg/kg total petroleum hydrocarbons did not pose a hazard to health or water resources and therefore, could remain insitu; 2) Soils destined for the residential areas of the site were remediated to 250mg/kg total petroleum hydrocarbons; in the industrial areas 500mg/kg was proven acceptable. 3) Hydrocarbons in groundwater were remediated to below the Dutch Intervegtion Level of 0.6mg/1; 4) Volatile organic compounds/BTEX group substances were reduced to below the Dutch Intervention Levels; 5) Polycyclic aromatic hydrocarbons and metals were below Inter-departmental Committee for the Redevelopment of Contaminated Land guideline levels for intended enduse. In order to verify the qualify of the work 1500 chemical test results were submitted for the purpose of validation. Quality assurance checks were undertaken by independent consultants and at an independent laboratory selected by Intergeo. Long term monitoring of water quality was undertaken for a period of one year after remediation work had been completed. Both the regulatory authorities and Clients representatives endorsed the quality of remediation now completed at the site. Subsequent to completion of the remediation work Redrew Homes constructed a prestige housing development. The properties at "Belvedere Place" retailed at premium prices. On the MEPC site the Post Office, amongst others, has located a major sorting office for the London area. Exceptionally high standards of remediation, control and documentation were a requirement for the work undertaken here.aken here.

  • PDF