• 제목/요약/키워드: Decision-trees

검색결과 311건 처리시간 0.027초

Analysis of Factors Influencing Land Use Typologies among Farming Households in Akinyele Municipality of Oyo State

  • Adebayo Samson Adeoye
    • Journal of Forest and Environmental Science
    • /
    • 제40권3호
    • /
    • pp.180-187
    • /
    • 2024
  • Land utilisation for various production practices in rural communities in Nigeria is marked with copious challenges and the management has become unsustainable among the local population. Therefore, the study was conducted to analyse factors influencing land use typologies, LUT among farming households in Akinyele Municipality of Oyo State, Nigeria. The employed a 3-stage sampling procedure for selection of 50 respondents from the study area. Information on demographic characteristics of the respondents, typologies of land use and factors impacting was collected with a structured questionnaire. The analyses of data collected was carried out was with frequencies, percentages and logit regression. The study showed majority (78.0%) were male, aged between 40 and 49 years, married (86.0%) and had secondary education (56.0%). The majority (78.0%) had household size ranging from 4-6 members, engaged in farming (80.0%). Furthermore, the result revealed that 94.0% of respondents conserve existing trees on their farmland, and about 56.0% of them were practicing agroforestry. The major factors affecting land use typologies were outcomes of climate change. The determining factors influencing LUT among farming households were occupation (β=1.829*), irregular rainfall (β=1.436*), depleted fruiting (β=1.438*), poor weather condition/drought (β=1.020*), and farmers' indigene (β=3.247*) at α0.05. The study recommends strengthening of land management policies and stakeholders' engagement in decision making as regards policies actualization to make land use typologies noticeable, effective and pronounce among farming households.

부스팅 트리에서 적정 트리사이즈의 선택에 관한 연구 (The guideline for choosing the right-size of tree for boosting algorithm)

  • 김아현;김지현;김현중
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권5호
    • /
    • pp.949-959
    • /
    • 2012
  • 범주형 목표변수를 잘 예측하기 위한 데이터마이닝 방법 중에서 최근에는 여러 단일 분류자를 결합한 앙상블 기법이 많이 활용되고 있다. 앙상블 기법 가운데 부스팅은 재표본 시 분류하기 어려운 관찰치의 가중치를 높여 분류자가 해당 관찰치에 보다 집중할 수 있도록 함으로써 다른 앙상블 기법에 비해 오차를 효과적으로 감소시키는 방법으로 알려져 있다. 부스팅을 구성하는 분류자를 의사결정나무로 둔 부스팅 트리 모형의 경우 각 트리의 사이즈를 결정해야 하는데, 본 연구에서는 자료 별로 부스팅 트리에 가장 적합한 트리사이즈가 서로 다를수 있다고 가정하고, 주어진 자료에 맞는 트리사이즈를 추정하는 문제에 대해 논의하였다. 우선 트리사이즈가 부스팅 트리의 정확도에 중요한 영향을 미치는가를 파악하기 위하여 28개의 자료를 대상으로 실험을 수행하였으며, 그 결과 트리사이즈를 결정하는 문제가 모형 전체의 성능을 결정하는데 상당한 역할을 한다는 것을 확인할 수 있었다. 또한 그 결과를 바탕으로 최적의 트리사이즈에 영향을 미칠 것으로 판단되는 몇 가지 특성 변수를 정의하고, 해당 변수를 이용하여 부스팅 트리에서의 최적 트리사이즈를 설명하는 모형을 구성해 보았다. 자료 별로 고유한 최적의 트리사이즈는 자료의 특성에 의존적일 가능성도 있으므로 본 연구에서 제안하는 추정방법은 최적 트리사이즈를 결정하기 위한 출발점 또는 가이드라인으로 활용하는 것이 적절할 것이다. 기존에는 부스팅 트리의 사이즈에 대한 값으로 목표변수의 범주의 개수를 활용하였는데, 본 모형에서 제안하는 트리사이즈의 추정치로 부스팅 트리를 구축한 경우 기존방법에 비해 분류정확도를 유의미하게 개선하는 것을 확인할 수 있었다.

연관관계 규칙을 이용한 학생 유지율 관리 방안 연구 (A Study on Management of Student Retention Rate Using Association Rule Mining)

  • 김종만;이동철
    • 한국산업정보학회논문지
    • /
    • 제23권6호
    • /
    • pp.67-77
    • /
    • 2018
  • 최근 학령인구 감소에 따라 많은 문제점들이 나타나고 있다. 우리나라는 인구대비 가장 많은 대학을 보유하고 있기 때문에 각 대학의 생존에 필요한 최소한의 학생 유지율 관리가 점점 더 중요해 지고 있다. 따라서 본 연구는 계속되는 학력인구의 감소에 따라 각 대학들이 생존 방안으로 학생 유지율의 적절한 관리 방안을 모색한다. 이를 위하여 특정 대학에 입학한 학생들을 대상으로 성별, 출신고, 출신지역, 성적, 졸업여부 등의 데이타를 분석하여, 학생들이 입학에서 졸업에 이르기까지 지속적으로 유지될 수 있는 학생 유지율을 관리하기 위한 기본적인 방향이 어떤 것인지 알아본다. 또한, 최적의 입력 변수를 파악하고, 최적의 입력 파라메터를 기초로 apriori 알고리즘을 이용하여 연관 분석을 실행하여 유지율 관리에 가장 적합한 자료를 수집할 수 있도록 한다. 이를 바탕으로 각 대학들이 학생들을 모집하고 유지하는데 도움이 되도록 가장 효율이 높은 딥러닝(Deep Learning) 모듈을 개발하기 위한 기초 자료로 만들고자 한다. 의사결정트리를 활용하여 졸업여부를 측정한 결과는 딥러닝의 정확도 보다 낮은 75%로 나타났다. 의사결정트리에서 졸업여부를 결정하는 요인은 일반고를 졸업하고, 도시지역에 거주하면서 여성이면서 성적이 높은 학생들이 졸업확율이 높은 것으로 나타났으며 결과적으로 의사결정트리 보다는 개발된 딥러닝듈이 더 효율적으로 학생들의 졸업여부를 평가할 수 있는 모델로 나타났다.

비용효율적 지능형 침입탐지시스템 구현을 위한 유전자 알고리즘 기반 통합 모형 (An Integrated Model based on Genetic Algorithms for Implementing Cost-Effective Intelligent Intrusion Detection Systems)

  • 이현욱;김지훈;안현철
    • 지능정보연구
    • /
    • 제18권1호
    • /
    • pp.125-141
    • /
    • 2012
  • 본 연구는 최근 그 중요성이 한층 높아지고 있는 침입탐지시스템(IDS, Intrusion Detection System)의 침입탐지모형을 개선하기 위한 방안으로 유전자 알고리즘에 기반한 새로운 통합모형을 제시한다. 본 연구의 제안모형은 서로 상호보완적 관계에 있는 이분류 모형인 로지스틱 회귀분석(LOGIT, Logistic Regression), 의사결정나무(DT, Decision Tree), 인공신경망 (ANN, Artificial Neural Network), 그리고 SVM(Support Vector Machine)의 예측결과에 적절한 가중치를 부여해 최종 예측결과를 산출하도록 하였는데, 이 때 최적 가중치의 탐색을 위한 방법으로는 유전자 알고리즘을 사용한다. 아울러, 본 연구에서는 1차적으로 오탐지율을 최소화하는 최적의 모형을 산출한 뒤, 이어 비대칭 오류비용 개념을 반영해 오탐지로 인해 발생할 수 있는 전체 비용을 최소화할 수 있는 최적 임계치를 탐색, 최종적으로 가장 비용 효율적인 침입탐지모형을 도출하고자 하였다. 본 연구에서는 제안모형의 우수성을 확인하기 위해, 국내 한 공공기관의 보안센서로부터 수집된 로그 데이터를 바탕으로 실증 분석을 수행하였다. 그 결과, 본 연구에서 제안한 유전자 알고리즘 기반 통합모형이 인공신경망이나 SVM만으로 구성된 단일모형에 비해 학습용과 검증용 데이터셋 모두에서 더 우수한 탐지율을 보임을 확인할 수 있었다. 비대칭 오류비용을 고려한 전체 비용의 관점에서도 단일모형으로 된 비교모형에 비해 본 연구의 제안모형이 더 낮은 비용을 나타냄을 확인할 수 있었다. 이렇게 실증적으로 그 효과가 검증된 본 연구의 제안 모형은 앞으로 보다 지능화된 침입탐지시스템을 개발하는데 유용하게 활용될 수 있을 것으로 기대된다.

다중모형조합기법을 이용한 상품추천시스템 (Product Recommender Systems using Multi-Model Ensemble Techniques)

  • 이연정;김경재
    • 지능정보연구
    • /
    • 제19권2호
    • /
    • pp.39-54
    • /
    • 2013
  • 전자상거래의 폭발적 증가는 소비자에게 더 유리한 많은 구매 선택의 기회를 제공한다. 이러한 상황에서 자신의 구매의사결정에 대한 확신이 부족한 소비자들은 의사결정 절차를 간소화하고 효과적인 의사결정을 위해 추천을 받아들인다. 온라인 상점의 상품추천시스템은 일대일 마케팅의 대표적 실현수단으로써의 가치를 인정받고 있다. 그러나 사용자의 기호를 제대로 반영하지 못하는 추천시스템은 사용자의 실망과 시간낭비를 발생시킨다. 본 연구에서는 정확한 사용자의 기호 반영을 통한 추천기법의 정교화를 위해 데이터마이닝과 다중모형조합기법을 이용한 상품추천시스템 모형을 제안하고자 한다. 본 연구에서 제안하는 모형은 크게 두 개의 단계로 이루어져 있으며, 첫 번째 단계에서는 상품군 별 우량고객 선정 규칙을 도출하기 위해서 로지스틱 회귀분석 모형, 의사결정나무 모형, 인공신경망 모형을 구축한 후 다중모형조합기법인 Bagging과 Bumping의 개념을 이용하여 세 가지 모형의 결과를 조합한다. 두 번째 단계에서는 상품군 별 연관관계에 관한 규칙을 추출하기 위하여 장바구니분석을 활용한다. 상기의 두 단계를 통하여 상품군 별로 구매가능성이 높은 우량고객을 선정하여 그 고객에게 관심을 가질만한 같은 상품군 또는 다른 상품군 내의 다른 상품을 추천하게 된다. 제안하는 상품추천시스템은 실제 운영 중인 온라인 상점인 'I아트샵'의 데이터를 이용하여 프로토타입을 구축하였고 실제 소비자에 대한 적용가능성을 확인하였다. 제안하는 모형의 유용성을 검증하기 위하여 제안 상품추천시스템의 추천과 임의 추천을 통한 추천의 결과를 사용자에게 제시하고 제안된 추천에 대한 만족도를 조사한 후 대응표본 T검정을 수행하였으며, 그 결과 사용자의 만족도를 유의하게 향상시키는 것으로 나타났다.

의사결정나무 CART 알고리즘을 이용한 청소년 아침결식 예측 모형: 제7기 (2016-2018년) 국민건강영양조사 자료분석 (A prediction model for adolescents' skipping breakfast using the CART algorithm for decision trees: 7th (2016-2018) Korea National Health and Nutrition Examination Survey)

  • 최선아;정성석;노정옥
    • Journal of Nutrition and Health
    • /
    • 제56권3호
    • /
    • pp.300-314
    • /
    • 2023
  • 본 연구는 2016-2018년 국민건강영양조사 자료를 이용하여 청소년의 아침결식과 관련된 요인을 찾고 아침결식 예측모형을 분석하여 청소년의 아침결식 예방 교육 및 정책 수립에 기초 자료를 제공하고자 하였다. 2016-2018년 국민건강영양조사의 참여자는 총 24,269명으로 12-18세의 청소년 중 변수 결측자를 제외한 대상자는 1,024명이며, 이중 아침식사 섭취자 579명, 결식자 445명이었다. 남학생의 49.1%, 여학생의 50.9%가 아침결식자였다. 연령은 아침식사 결식군이 유의적으로 높으며, 결식군의 고등학생 비율이 높았다. 가구소득 4분위수는 아침식사 섭취군의 9.1%, 결식군의 15.4%가 '하'로 유의적인 차이를 보였다. 조사대상자의 신체적 요인은 유의적인 차이를 보이지 않았으나 체중감소를 위해 결식을 하는 경우는 아침식사 결식군의 25.3%, 섭취군의 10.4%로 유의적인 차이를 보였다. 조사대상자의 식습관과 정신건강에서 아침식사 결식군이 섭취군보다 1일 1회이상 외식횟수가 유의적으로 높았으며, 최근 1년간 1주 동안 5-7회 이상의 저녁식사 섭취빈도는 아침섭취군이 유의적으로 높았다. 또한, 아침식사 섭취군은 결식군보다 영양교육 경험이 유의적으로 높았으며, 아침식사 섭취군이 결식군보다 에너지, 단백질, 지방, 탄수화물, 식이섬유, 콜레스테롤, 비타민 A, 비타민 B1, 비타민 B2, 니아신, 비타민 C, 칼슘, 인, 나트륨, 칼륨, 철의 섭취율 및 탄수화물, 단백질, 지방의 섭취비율도 유의적으로 높았다. 아침결식 예측 모형을 도출하기 위해 CART 알고리즘을 사용한 의사결정나무 분석결과, 아침식사 섭취여부를 결정하는 주요인은 투입된 7개의 변수 중 교육수준과 영양교육 경험을 제외한 결식을 통한 체중조절, 가구소득 4분위수, 저녁식사 빈도, 연령, 외식 횟수였다. 체중조절을 위하여 결식을 하는 경우는 아침식사 결식군에서 높았다. 체중조절을 위하여 결식을 하지 않는 대상자는 가구소득 4분위수의 수준에서 소득이 '하', '중하'일 때 아침결식 비율이 높았다. 가구소득수준이 '상', '중상' 대상자의 경우는 저녁식사 빈도가 주 3-4회 이하인 경우 아침결식 비율이 높았다. 저녁식사 빈도가 주 5-7회이더라도 연령이 14.5세 초과인 경우 아침결식을 하고 있으며, 연령이 14.5세 미만인 대상자들은 외식횟수가 일 1회 이상인 경우, 주 6회 이하인 경우 아침결식을 하고 있었다. 따라서 아침결식을 감소시키기 위해서 청소년 대상의 각 그룹의 결식 주요인에 따라 올바른 체중조절 방법, 아침식사 배달, 건강정보에 대한 접근성 높이기, 아침결식과 질병과의 관련성 교육을 위한 토론수업 및 역할놀이 등과 같은 맞춤형 교육이 필요하며, 향후 청소년의 저녁식사 결식 감소 방안에 대한 연구가 추가적으로 진행되어야 하겠다.

SVM과 meta-learning algorithm을 이용한 고지혈증 유병 예측모형 개발과 활용 (Development and application of prediction model of hyperlipidemia using SVM and meta-learning algorithm)

  • 이슬기;신택수
    • 지능정보연구
    • /
    • 제24권2호
    • /
    • pp.111-124
    • /
    • 2018
  • 본 연구는 만성질환 중의 하나인 고지혈증 유병을 예측하는 분류모형을 개발하고자 한다. 이를 위해 SVM과 meta-learning 알고리즘을 이용하여 성과를 비교하였다. 또한 각 알고리즘에서 성과를 향상시키기 위해 변수선정 방법을 통해 유의한 변수만을 선정하여 투입하여 분석하였고 이 결과 역시 각각 성과를 비교하였다. 본 연구목적을 달성하기 위해 한국의료패널 2012년 자료를 이용하였고, 변수 선정을 위해 세 가지 방법을 사용하였다. 먼저 단계적 회귀분석(stepwise regression)을 실시하였다. 둘째, 의사결정나무(decision tree) 알고리즘을 사용하였다. 마지막으로 유전자 알고리즘을 사용하여 변수를 선정하였다. 한편, 이렇게 선정된 변수를 기준으로 SVM, meta-learning 알고리즘 등을 이용하여 고지혈증 환자분류 예측모형을 비교하였고, TP rate, precision 등을 사용하여 분류 성과를 비교분석하였다. 이에 대한 분석결과는 다음과 같다. 첫째, 모든 변수를 투입하여 분류한 결과 SVM의 정확도는 88.4%, 인공신경망의 정확도는 86.7%로 SVM의 정확도가 좀 더 높았다. 둘째, stepwise를 통해 선정된 변수만을 투입하여 분류한 결과 전체 변수를 투입하였을 때보다 각각 정확도가 약간 높았다. 셋째, 의사결정나무에 의해 선정된 변수 3개만을 투입하였을 때 인공신경망의 정확도가 SVM보다 높았다. 유전자 알고리즘을 통해 선정된 변수를 투입하여 분류한 결과 SVM은 88.5%, 인공신경망은 87.9%의 분류 정확도를 보여 주었다. 마지막으로, 본 연구에서 제안하는 meta-learning 알고리즘인 스태킹(stacking)을 적용한 결과로서, SVM과 MLP의 예측결과를 메타 분류기인 SVM의 입력변수로 사용하여 예측한 결과, 고지혈증 분류 정확도가 meta-learning 알고리즘 중에서는 가장 높은 것으로 나타났다.

Ensemble of Nested Dichotomies 기법을 이용한 스마트폰 가속도 센서 데이터 기반의 동작 인지 (Ensemble of Nested Dichotomies for Activity Recognition Using Accelerometer Data on Smartphone)

  • 하으뜸;김정민;류광렬
    • 지능정보연구
    • /
    • 제19권4호
    • /
    • pp.123-132
    • /
    • 2013
  • 최근 스마트 폰에 다양한 센서를 내장할 수 있게 되었고 스마트폰에 내장된 센서를 이용항 동작 인지에 관한 연구가 활발히 진행되고 있다. 스마트폰을 이용한 동작 인지는 노인 복지 지원이나 운동량 측정. 생활 패턴 분석, 운동 패턴 분석 등 다양한 분야에 활용될 수 있다. 하지만 스마트 폰에 내장된 센서를 이용하여 동작 인지를 하는 방법은 사용되는 센서의 수에 따라 단일 센서를 이용한 동작인지와 다중 센서를 이용한 동작인지로 나눌 수 있다. 단일 센서를 이용하는 경우 대부분 가속도 센서를 이용하기 때문에 배터리 부담은 줄지만 다양한 동작을 인지할 때에 특징(feature) 추출의 어려움과 동작 인지 정확도가 낮다는 문제점이 있다. 그리고 다중 센서를 이용하는 경우 대부분 가속도 센서와 중력센서를 사용하고 필요에 따라 다른 센서를 추가하여 동작인지를 수행하며 다양한 동작을 보다 높은 정확도로 인지할 수 있지만 다수의 센서를 사용하기 때문에 배터리 부담이 증가한다는 문제점이 있다. 따라서 본 논문에서는 이러한 문제를 해결하기 위해 스마트 폰에 내장된 가속도 센서를 이용하여 다양한 동작을 높은 정확도로 인지하는 방법을 제안한다. 서로 다른 10가지의 동작을 높을 정확도로 인지하기 위해 원시 데이터로부터 17가지 특징을 추출하고 각 동작을 분류하기 위해 Ensemble of Nested Dichotomies 분류기를 사용하였다. Ensemble of Nested Dichotomies 분류기는 다중 클래스 문제를 다수의 이진 분류 문제로 변형하여 다중 클래스 문제를 해결하는 방법으로 서로 다른 Nested Dichotomy 분류기의 분류 결과를 통해 다중 클래스 문제를 해결하는 기법이다. Nested Dichotomy 분류기 학습에는 Random Forest 분류기를 사용하였다. 성능 평가를 위해 Decision Tree, k-Nearest Neighbors, Support Vector Machine과 비교 실험을 한 결과 Ensemble of Nested Dichotomies 분류기를 사용하여 동작 인지를 수행하는 것이 가장 높은 정확도를 보였다.

KOSDAQ 시장의 관리종목 지정 탐지 모형 개발 (Development of a Detection Model for the Companies Designated as Administrative Issue in KOSDAQ Market)

  • 신동인;곽기영
    • 지능정보연구
    • /
    • 제24권3호
    • /
    • pp.157-176
    • /
    • 2018
  • 관리종목은 상장폐지 가능성이 높은 기업들을 즉시 퇴출하기 보다는 시장 안에서 일정한 제약을 부여하고, 그러한 기업들에게 상장폐지 사유를 극복할 수 있는 시간적 기회를 주는 제도이다. 뿐만 아니라 이를 투자자 및 시장참여자들에게 공시하여 투자의사결정에 주의를 환기시키는 역할을 한다. 기업의 부실화로 인한 부도 예측에 관한 연구는 많이 있으나, 부실화 가능성이 높은 기업에 대한 사회, 경제적 경보체계라 할 수 있는 관리종목에 관한 연구는 상대적으로 매우 부족하다. 이에 본 연구는 코스닥 기업들 가운데 관리종목 지정 기업과 비관리종목 기업을 표본으로 삼아 로지스틱 회귀분석과 의사결정나무 분석을 이용하여 관리종목 지정 예측 모형을 개발하고 검증하였다. 분석결과에 따르면 로지스틱 회귀분석 모형은 ROE(세전계속사업이익), 자기자본현금흐름률, 총자산회전율을 사용하여 관리종목 지정을 예측하였으며, 전체 평균 예측 정확도는 검증용 데이터셋에 대해 86%의 높은 성능을 보여주었다. 의사결정나무 모형은 현금흐름/총자산과 ROA(당기순이익)를 통한 분류규칙을 적용하여 약 87%의 예측 정확도를 보여주었다. 로지스틱 회귀분석 기반의 관리종목 탐지 모형의 경우 ROE(세전계속사업이익)와 같은 구체적인 관리종목 지정 사유를 반영하면서 기업의 활동성에 초점을 맞추어 관리종목 지정 경향성을 설명하는 반면, 의사결정 관리종목 탐지 모형은 기업의 현금흐름을 중심으로 하여 관리종목 지정을 예측하는 것으로 나타났다.

조선 후기 원유의 영선체제와 과정에 관한 연구 (A Study on the System and Process of the Construction and Management for the Royal Garden and Landscape in the Late Choson Dynasty)

  • 전영옥
    • 한국조경학회지
    • /
    • 제26권2호
    • /
    • pp.73-90
    • /
    • 1998
  • The construction and management of the royal garden and landscape were the most significant project in Choson Dynasty. The kind of the royal garden and landscape were the rear garden of the palace, the groves of the royal shrine and orchard, etc. As the important project of the country, these constructions were controlled by the administrative system without division into the fields of engineering, building and landscaping. The purpose of this study is to investigate the administrative system. In particular, this study is focused on the construction and management of the royal garden and landscape in Hanyang from the 18th century to the late 19th century. This study is based on the analysis of historic documents and a survey of the relics. The results were summarized as follows : 1) The administrative system of the construction and management of the royal garden and landscape was composed of the government offices under Industry Board as a permanent organization - Yongjosa, Santaeksa, Chunchonsa, Songonggam, Changwonso - and Togam as a temporary organization. In addition to these organizations, there were Revenue Board, Ceremony Board, Military Board, which served as supporting organizations. The control of the construction and management of the royal garden and landscape was held by decision makers, executors of works and management. 2) The general process of the construction and management of the royal garden and landscape included Sangji and Kyuho다 as the first step; In case of buildings and facilities, according to former examples and drawings, the most of the planning and design was already fixed. In the case of landscape, those things aimed at construction according to the existing lie of the land. The works in the 2nd step; This process was divided into the construction of facilities and planting. In case of construction of facilities, those works were done by Togam and Songonggam. The high cost works were carried out through Togam and normal repairing works were completed by Songonggam. In case of planting, those works were carried out through Chunchonsa and the military. The management in the 3rd step; This process was done by two parts like the process of works. In case of facilities, management was done 효 the officers of Pongshim. In case of groves of newly - planted trees, this management was done by Tongsanbyonlgam and Tongsanjik who served cultivation and harvest of fruit trees as an expert.

  • PDF